Literatura científica selecionada sobre o tema "Interpretability of AI Models for Parkinson's Disease Detection"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Interpretability of AI Models for Parkinson's Disease Detection".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Interpretability of AI Models for Parkinson's Disease Detection"
Samuel Fanijo, Uyok Hanson, Taiwo Akindahunsi, Idris Abijo e Tinuade Bolutife Dawotola. "Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases". World Journal of Advanced Research and Reviews 19, n.º 2 (30 de agosto de 2023): 1578–87. http://dx.doi.org/10.30574/wjarr.2023.19.2.1432.
Texto completo da fonteAdeniran, Opeyemi Taiwo, Blessing Ojeme, Temitope Ezekiel Ajibola, Ojonugwa Oluwafemi Ejiga Peter, Abiola Olayinka Ajala, Md Mahmudur Rahman e Fahmi Khalifa. "Explainable MRI-Based Ensemble Learnable Architecture for Alzheimer’s Disease Detection". Algorithms 18, n.º 3 (13 de março de 2025): 163. https://doi.org/10.3390/a18030163.
Texto completo da fonteHamza, Naeem, Nuaman Ahmed e Naeema Zainaba. "A Comparative Analysis of Traditional and AI-Driven Methods for Disease Detection: Novel Approaches, Methodologies, and Challenges". Journal of Medical Health Research and Psychiatry 01, n.º 02 (2024): 01–03. https://doi.org/10.70844/jmhrp.2024.1.2.28.
Texto completo da fonteFatima, Shereen, Hidayatullah Shaikh, Attaullah Sahito e Asadullah Kehar. "A Review of Skin Disease Detection Using Deep Learning". VFAST Transactions on Software Engineering 12, n.º 4 (31 de dezembro de 2024): 220–38. https://doi.org/10.21015/vtse.v12i4.2022.
Texto completo da fonteHasan Saif, Fatima, Mohamed Nasser Al-Andoli e Wan Mohd Yaakob Wan Bejuri. "Explainable AI for Alzheimer Detection: A Review of Current Methods and Applications". Applied Sciences 14, n.º 22 (5 de novembro de 2024): 10121. http://dx.doi.org/10.3390/app142210121.
Texto completo da fonteRakhi Raghukumar, Aswathi V Nair, Amrutha Raju, Aina S Dcruz e Susheel George Joseph. "AI Used to Predict Alzheimer’s Disease". International Research Journal on Advanced Engineering and Management (IRJAEM) 2, n.º 12 (12 de dezembro de 2024): 3647–51. https://doi.org/10.47392/irjaem.2024.0541.
Texto completo da fonteIsmail Y e Vijaya Kumar Voleti. "A Review on Usage of Artificial Intelligence for Early Detection and Management of Alzheimer's Disease". Journal of Pharma Insights and Research 2, n.º 5 (4 de outubro de 2024): 007–13. http://dx.doi.org/10.69613/06tz7453.
Texto completo da fontePaul, Tanmoy, Omiya Hassan, Christina S. McCrae, Syed Kamrul Islam e Abu Saleh Mohammad Mosa. "An Explainable Fusion of ECG and SpO2-Based Models for Real-Time Sleep Apnea Detection". Bioengineering 12, n.º 4 (3 de abril de 2025): 382. https://doi.org/10.3390/bioengineering12040382.
Texto completo da fonteSarma Borah, Proyash Paban, Devraj Kashyap, Ruhini Aktar Laskar e Ankur Jyoti Sarmah. "A Comprehensive Study on Explainable AI Using YOLO and Post Hoc Method on Medical Diagnosis". Journal of Physics: Conference Series 2919, n.º 1 (1 de dezembro de 2024): 012045. https://doi.org/10.1088/1742-6596/2919/1/012045.
Texto completo da fonteGupta, Ayush, Jeya Mala D., Vishal Kumar Yadav e Mayank Arora. "Dissecting Retinal Disease: A Multi-Modal Deep Learning Approach with Explainable AI for Disease Classification across Various Classes". International Journal of Online and Biomedical Engineering (iJOE) 21, n.º 02 (17 de fevereiro de 2025): 38–51. https://doi.org/10.3991/ijoe.v21i02.51409.
Texto completo da fonteTeses / dissertações sobre o assunto "Interpretability of AI Models for Parkinson's Disease Detection"
Filali, razzouki Anas. "Deep learning-based video face-based digital markers for early detection and analysis of Parkinson disease". Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAS002.
Texto completo da fonteThis thesis aims to develop robust digital biomarkers for early detection of Parkinson's disease (PD) by analyzing facial videos to identify changes associated with hypomimia. In this context, we introduce new contributions to the state of the art: one based on shallow machine learning and the other on deep learning.The first method employs machine learning models that use manually extracted facial features, particularly derivatives of facial action units (AUs). These models incorporate interpretability mechanisms that explain their decision-making process for stakeholders, highlighting the most distinctive facial features for PD. We examine the influence of biological sex on these digital biomarkers, compare them against neuroimaging data and clinical scores, and use them to predict PD severity.The second method leverages deep learning to automatically extract features from raw facial videos and optical flow using foundational models based on Video Vision Transformers. To address the limited training data, we propose advanced adaptive transfer learning techniques, utilizing foundational models trained on large-scale video classification datasets. Additionally, we integrate interpretability mechanisms to clarify the relationship between automatically extracted features and manually extracted facial AUs, enhancing the comprehensibility of the model's decisions.Finally, our generated facial features are derived from both cross-sectional and longitudinal data, which provides a significant advantage over existing work. We use these recordings to analyze the progression of hypomimia over time with these digital markers, and its correlation with the progression of clinical scores.Combining these two approaches allows for a classification AUC (Area Under the Curve) of over 90%, demonstrating the efficacy of machine learning and deep learning models in detecting hypomimia in early-stage PD patients through facial videos. This research could enable continuous monitoring of hypomimia outside hospital settings via telemedicine
Capítulos de livros sobre o assunto "Interpretability of AI Models for Parkinson's Disease Detection"
Mittal, Shashank, Priyank Kumar Singh, Saikat Gochhait e Shubham Kumar. "Explainable AI (XAI) for Green AI-Powered Disease Prognosis". In Advances in Medical Diagnosis, Treatment, and Care, 141–60. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1243-8.ch008.
Texto completo da fonteDehankar, Pooja, e Susanta Das. "Detection of Heart Disease Using ANN". In Future of AI in Biomedicine and Biotechnology, 182–96. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3629-8.ch009.
Texto completo da fonteBiswas, Neepa, Debarpita Santra, Bannishikha Banerjee e Sudarsan Biswas. "Harnessing the Power of Machine Learning for Parkinson's Disease Detection". In AIoT and Smart Sensing Technologies for Smart Devices, 140–55. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0786-1.ch008.
Texto completo da fonteTripathi, Rati Kailash Prasad, e Shrikant Tiwari. "Unravelling the Enigma of Machine Learning Model Interpretability in Enhancing Disease Prediction". In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 125–53. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8531-6.ch007.
Texto completo da fonteKrishna Pasupuleti, Murali. "AI-Driven Mutation Detection: Transforming Genomic Data into Insights for Disease Prediction". In AI in Genomic Data Analysis: Identifying Disease-Causing Mutations, 1–28. National Education Services, 2024. http://dx.doi.org/10.62311/nesx/46694.
Texto completo da fonteTafadzwa Mpofu, Kelvin, e Patience Mthunzi-Kufa. "Recent Advances in Artificial Intelligence and Machine Learning Based Biosensing Technologies". In Current Developments in Biosensor Applications and Smart Strategies [Working Title]. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1009613.
Texto completo da fonteSharma, Ajay, Devendra Babu Pesarlanka e Shamneesh Sharma. "Harnessing Machine Learning and Deep Learning in Healthcare From Early Diagnosis to Personalized Treatment". In Advances in Healthcare Information Systems and Administration, 369–98. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-7277-7.ch012.
Texto completo da fonteRaj, Sundeep, Arun Prakash Agarwal, Sandesh Tripathi e Nidhi Gupta. "Prediction and Analysis of Digital Health Records, Geonomics, and Radiology Using Machine Learning". In Prediction in Medicine: The Impact of Machine Learning on Healthcare, 24–43. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815305128124010005.
Texto completo da fonte