Literatura científica selecionada sobre o tema "K free integers"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "K free integers".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "K free integers"

1

Wu, Xia, and Yan Qin. "Rational Points of Elliptic Curve y2=x3+k3." Algebra Colloquium 25, no. 01 (2018): 133–38. http://dx.doi.org/10.1142/s1005386718000081.

Texto completo da fonte
Resumo:
Let E be an elliptic curve defined over the field of rational numbers ℚ. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely many square-free integers d such that the rank of Ed(ℚ) is zero. Let E(k) denote the elliptic curve y2 = x3 + k. Then the quadratic twist E(1)d of E(1) by d is the elliptic curve [Formula: see text]. Let r = 1, 2, 5, 10, 13, 14, 17, 22. Ono proved that there are infinitely many square-free integers d ≡ r (mod 24) such that rank [Formula: see text], using the theory of modular form
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Haukkanen, Pentti. "Arithmetical functions associated with conjugate pairs of sets under regular convolutions." Notes on Number Theory and Discrete Mathematics 28, no. 4 (2022): 656–65. http://dx.doi.org/10.7546/nntdm.2022.28.4.656-665.

Texto completo da fonte
Resumo:
Two subsets P and Q of the set of positive integers is said to form a conjugate pair if each positive integer n possesses a unique factorization of the form n = ab, a ∈ P, b ∈ Q. In this paper we generalize conjugate pairs of sets to the setting of regular convolutions and study associated arithmetical functions. Particular attention is paid to arithmetical functions associated with k-free integers and k-th powers under regular convolution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Minh, Nguyen Quang. "A Generalisation of Maximal (k,b)-Linear-Free Sets of Integers." Journal of Combinatorial Mathematics and Combinatorial Computing 120, no. 1 (2024): 315–21. http://dx.doi.org/10.61091/jcmcc120-28.

Texto completo da fonte
Resumo:
Fix integers k , b , q with k ≥ 2 , b ≥ 0 , q ≥ 2 . Define the function p to be: p ( x ) = k x + b . We call a set S of integers \emph{ ( k , b , q ) -linear-free} if x ∈ S implies p i ( x ) ∉ S for all i = 1 , 2 , … , q − 1 , where p i ( x ) = p ( p i − 1 ( x ) ) and p 0 ( x ) = x . Such a set S is maximal in [ n ] := { 1 , 2 , … , n } if S ∪ { t } , ∀ t ∈ [ n ] ∖ S is not ( k , b , q ) -linear-free. Let M k , b , q ( n ) be the set of all maximal ( k , b , q ) -linear-free subsets of [ n ] , and define g k , b , q ( n ) = min S ∈ M k , b , q ( n ) | S | and f k , b , q ( n ) = max S ∈ M k ,
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Liu, H. Q. "On the distribution of k-free integers." Acta Mathematica Hungarica 144, no. 2 (2014): 269–84. http://dx.doi.org/10.1007/s10474-014-0454-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wlazinski, Francis. "A uniform cube-free morphism is k-power-free for all integers k ≥ 4." RAIRO - Theoretical Informatics and Applications 51, no. 4 (2017): 205–16. http://dx.doi.org/10.1051/ita/2017015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Cellarosi, Francesco, and Ilya Vinogradov. "Ergodic properties of $k$-free integers in number fields." Journal of Modern Dynamics 7, no. 3 (2013): 461–88. http://dx.doi.org/10.3934/jmd.2013.7.461.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dong, D., and X. Meng. "Irrational Factor of Order k and ITS Connections With k-Free Integers." Acta Mathematica Hungarica 144, no. 2 (2014): 353–66. http://dx.doi.org/10.1007/s10474-014-0420-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Choi, Dohoon, та Youngmin Lee. "Modular forms of half-integral weight on Γ0(4) with few nonvanishing coefficients modulo ". Open Mathematics 20, № 1 (2022): 1320–36. http://dx.doi.org/10.1515/math-2022-0512.

Texto completo da fonte
Resumo:
Abstract Let k k be a nonnegative integer. Let K K be a number field and O K {{\mathcal{O}}}_{K} be the ring of integers of K K . Let ℓ ≥ 5 \ell \ge 5 be a prime and v v be a prime ideal of O K {{\mathcal{O}}}_{K} over ℓ \ell . Let f f be a modular form of weight k + 1 2 k+\frac{1}{2} on Γ 0 {\Gamma }_{0} (4) such that its Fourier coefficients are in O K {{\mathcal{O}}}_{K} . In this article, we study sufficient conditions that if f f has the form f ( z ) ≡ ∑ n = 1 ∞ ∑ i = 1 t a f ( s i n 2 ) q s i n 2 ( mod v ) f\left(z)\equiv \mathop{\sum }\limits_{n=1}^{\infty }\mathop{\sum }\limits_{i=1}^{
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

LE BOUDEC, PIERRE. "POWER-FREE VALUES OF THE POLYNOMIAL t1⋯tr−1." Bulletin of the Australian Mathematical Society 85, no. 1 (2011): 154–63. http://dx.doi.org/10.1017/s0004972711002590.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Benamar, Hela, Amara Chandoul, and M. Mkaouar. "On the Continued Fraction Expansion of Fixed Period in Finite Fields." Canadian Mathematical Bulletin 58, no. 4 (2015): 704–12. http://dx.doi.org/10.4153/cmb-2015-055-9.

Texto completo da fonte
Resumo:
AbstractThe Chowla conjecture states that if t is any given positive integer, there are infinitely many prime positive integers N such that Per() = t, where Per() is the period length of the continued fraction expansion for . C. Friesen proved that, for any k ∈ ℕ, there are infinitely many square-free integers N, where the continued fraction expansion of has a fixed period. In this paper, we describe all polynomials for which the continued fraction expansion of has a fixed period. We also give a lower bound of the number of monic, non-squares polynomials Q such that deg Q = 2d and Per =t.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!