Literatura científica selecionada sobre o tema "Linear ODE"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Linear ODE".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Linear ODE"
Deutscher, Joachim, Nicole Gehring e Richard Kern. "Output feedback control of general linear heterodirectional hyperbolic ODE–PDE–ODE systems". Automatica 95 (setembro de 2018): 472–80. http://dx.doi.org/10.1016/j.automatica.2018.06.021.
Texto completo da fonteRadnef, Sorin. "Analytic Solution of Non-Autonomous Linear ODE". PAMM 6, n.º 1 (dezembro de 2006): 651–52. http://dx.doi.org/10.1002/pamm.200610306.
Texto completo da fonteHu, Jie, Huihui Qin e Xiaodan Fan. "Can ODE gene regulatory models neglect time lag or measurement scaling?" Bioinformatics 36, n.º 13 (23 de abril de 2020): 4058–64. http://dx.doi.org/10.1093/bioinformatics/btaa268.
Texto completo da fonteLorber, Alfred A., Graham F. Carey e Wayne D. Joubert. "ODE Recursions and Iterative Solvers for Linear Equations". SIAM Journal on Scientific Computing 17, n.º 1 (janeiro de 1996): 65–77. http://dx.doi.org/10.1137/0917006.
Texto completo da fonteShi-Da, Liu, Fu Zun-Tao, Liu Shi-Kuo, Xin Guo-Jun, Liang Fu-Ming e Feng Bei-Ye. "Solitary Wave in Linear ODE with Variable Coefficients". Communications in Theoretical Physics 39, n.º 6 (15 de junho de 2003): 643–46. http://dx.doi.org/10.1088/0253-6102/39/6/643.
Texto completo da fonteAyadi, Habib. "Exponential stabilization of an ODE–linear KdV cascaded system with boundary input delay". IMA Journal of Mathematical Control and Information 37, n.º 4 (23 de setembro de 2020): 1506–23. http://dx.doi.org/10.1093/imamci/dnaa022.
Texto completo da fonteImoni, Sunday Obomeviekome, D. I. Lanlege, E. M. Atteh e J. O. Ogbondeminu. "FORMULATION OF BLOCK SCHEMES WITH LINEAR MULTISTEP METHOD FOR THE APPROXIMATION OF FIRST-ORDER IVPS". FUDMA JOURNAL OF SCIENCES 4, n.º 3 (24 de setembro de 2020): 313–22. http://dx.doi.org/10.33003/fjs-2020-0403-260.
Texto completo da fontePOSPÍŠIL, JIŘÍ, ZDENĚK KOLKA, JANA HORSKÁ e JAROMÍR BRZOBOHATÝ. "SIMPLEST ODE EQUIVALENTS OF CHUA'S EQUATIONS". International Journal of Bifurcation and Chaos 10, n.º 01 (janeiro de 2000): 1–23. http://dx.doi.org/10.1142/s0218127400000025.
Texto completo da fonteMukhopadhyay, S., R. Picard, S. Trostorff e M. Waurick. "A note on a two-temperature model in linear thermoelasticity". Mathematics and Mechanics of Solids 22, n.º 5 (8 de dezembro de 2015): 905–18. http://dx.doi.org/10.1177/1081286515611947.
Texto completo da fonteAksan, Emine. "An application of cubic B-Spline finite element method for the Burgers` equation". Thermal Science 22, Suppl. 1 (2018): 195–202. http://dx.doi.org/10.2298/tsci170613286a.
Texto completo da fonteTeses / dissertações sobre o assunto "Linear ODE"
D'Augustine, Anthony Frank. "MATLODE: A MATLAB ODE Solver and Sensitivity Analysis Toolbox". Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83081.
Texto completo da fonteMaster of Science
Albishi, Njwd. "Three-and four-derivative Hermite-Birkhoff-Obrechkoff solvers for stiff ODE". Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34332.
Texto completo da fonteDELLA, MARCA ROSSELLA. "Problemi di controllo in epidemiologia matematica e comportamentale". Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1237622.
Texto completo da fonteDespite major achievements in eliminating long-established infections (as in the very well known case of smallpox), recent decades have seen the continual emergence or re-emergence of infectious diseases (last but not least COVID-19). They are not only threats to global health, but direct and indirect costs generated by human and animal epidemics are responsible for significant economic losses worldwide. Mathematical models of infectious diseases spreading have played a significant role in infection control. On the one hand, they have given an important contribution to the biological and epidemiological understanding of disease outbreak patterns; on the other hand, they have helped to determine how and when to apply control measures in order to quickly and most effectively contain epidemics. Nonetheless, in order to shape local and global public health policies, it is essential to gain a better and more comprehensive understanding of effective actions to control diseases, by finding ways to employ new complexity layers. This was the main focus of the research I have carried out during my PhD; the products of this research are collected and connected in this thesis. However, because out of context, other problems I interested in have been excluded from this collection: they rely in the fields of autoimmune diseases and landscape ecology. We start with an Introduction chapter, which traces the history of epidemiological models, the rationales and the breathtaking incremental advances. We focus on two critical aspects: i) the qualitative and quantitative assessment of control strategies specific to the problem at hand (via e.g. optimal control or threshold policies); ii) the incorporation into the model of the human behavioral changes in response to disease dynamics. In this framework, our studies are inserted and contextualized. Hereafter, to each of them a specific chapter is devoted. The techniques used include the construction of appropriate models given by non-linear ordinary differential equations, their qualitative analysis (via e.g. stability and bifurcation theory), the parameterization and validation with available data. Numerical tests are performed with advanced simulation methods of dynamical systems. As far as optimal control problems are concerned, the formulation follows the classical approach by Pontryagin, while both direct and indirect optimization methods are adopted for the numerical resolution. In Chapter 1, within a basic Susceptible-Infected-Removed model framework, we address the problem of minimizing simultaneously the epidemic size and the eradication time via optimal vaccination or isolation strategies. A two-patches metapopulation epidemic model, describing the dynamics of Susceptibles and Infected in wildlife diseases, is formulated and analyzed in Chapter 2. Here, two types of localized culling strategies are considered and compared: proactive and reactive. Chapter 3 concerns a model for vaccine-preventable childhood diseases transmission, where newborns vaccination follows an imitation game dynamics and is affected by awareness campaigns by the public health system. Vaccination is also incorporated in the model of Chapter 4. Here, it addresses susceptible individuals of any age and depends on the information and rumors about the disease. Further, the vaccine effectiveness is assumed to be partial and waning over time. The last Chapter 5 is devoted to the ongoing pandemic of COVID-19. We build an epidemic model with information-dependent contact and quarantine rates. The model is applied to the Italian case and explicitly incorporates the progressive lockdown restrictions.
Hewitt, Laura L. "General linear methods for the solution of ODEs". Thesis, University of Bath, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516948.
Texto completo da fonteFarris, Thomas Edward. "Searching for the CP-odd Higgs at a linear collider /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Texto completo da fonteFernandes, Ray Stephen. "Very singular solutions of odd-order PDEs, with linear and nonlinear dispersion". Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507233.
Texto completo da fontePaditz, Ludwig. "Using ClassPad-technology in the education of students of electrical engineering (Fourier- and Laplace-Transformation)". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-80814.
Texto completo da fontePaditz, Ludwig. "Using ClassPad-technology in the education of students of electricalengineering (Fourier- and Laplace-Transformation)". Proceedings of the tenth International Conference Models in Developing Mathematics Education. - Dresden : Hochschule für Technik und Wirtschaft, 2009. - S. 469 - 474, 2012. https://slub.qucosa.de/id/qucosa%3A1799.
Texto completo da fonteStarkloff, Hans-Jörg, e Ralf Wunderlich. "Stationary solutions of linear ODEs with a randomly perturbed system matrix and additive noise". Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501335.
Texto completo da fonteBarreau, Matthieu. "Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30058.
Texto completo da fonteThis thesis is about the stability analysis of a coupled finite dimensional system and an infinite dimensional one. This kind of systems emerges in the physics since it is related to the modeling of structures for instance. The generic analysis of such systems is complex, mainly because of their different nature. Here, the analysis is conducted using different methodologies. First, the recent Quadratic Separation framework is used to deal with the frequency aspect of such systems. Then, a second result is derived using a Lyapunov-based argument. All the results are obtained considering the projections of the infinite dimensional state on a basis of polynomials. It is then possible to take into account the coupling between the two systems. That results in tractable and reliable numerical tests with a moderate conservatism. Moreover, a hierarchy on the stability conditions is shown in the Lyapunov case. The real application to a drilling mechanism is proposed to illustrate the efficiency of the method and it opens new perspectives. For instance, using the notion of practical stability, we show that a PI-controlled drillstring is subject to a limit cycle and that it is possible to estimate its amplitude
Livros sobre o assunto "Linear ODE"
Saylor, Paul E. Linear iterative solvers for implicit ode methods. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Encontre o texto completo da fonteC, Sprott Julien, e ebrary Inc, eds. 2-D quadratic maps and 3-D ODE systems: A rigorous approach. Singapore: World Scientific Pub. Co., 2010.
Encontre o texto completo da fonteRobert, Hermann. Lie-theoretic ODE numerical analysis, mechanics, and differential systems. Brookline, Mass: Math Sci Press, 1994.
Encontre o texto completo da fonteDer Diskos von Phaistos: Fremdeinfluss oder kretisches Erbe? Norderstedt: Books on Demand, 2005.
Encontre o texto completo da fonteManichev, Vladimir, Valentina Glazkova e Кузьмина Анастасия. Numerical methods. The authentic and exact solution of the differential and algebraic equations in SAE systems of SAPR. ru: INFRA-M Academic Publishing LLC., 2016. http://dx.doi.org/10.12737/13138.
Texto completo da fonteHung, Pei-Ken. The linear stability of the Schwarzschild spacetime in the harmonic gauge: Odd part. [New York, N.Y.?]: [publisher not identified], 2018.
Encontre o texto completo da fonteHettlich, Frank. Vorkurs Mathematik: Ein Arbeitsheft zur Vorbereitung auf den Start eines Hochschulstudiums in Mathematik, Informatik einer Naturwissenschaft oder einer Ingenieurwissenschaft. Aachen: Shaker, 2004.
Encontre o texto completo da fonteZemanian, A. H. Realizability theory for continuous linear systems. New York: Dover, 1995.
Encontre o texto completo da fonteThe minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic. Providence, R.I: American Mathematical Society, 2009.
Encontre o texto completo da fonteAndreischeva, Elena. A collection of practical and laboratory works in higher mathematics. Elements of linear and vector algebra. Workshop. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1089868.
Texto completo da fonteCapítulos de livros sobre o assunto "Linear ODE"
Enns, Richard H., e George C. McGuire. "Linear ODE Models". In Computer Algebra Recipes, 325–96. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0171-4_7.
Texto completo da fonteBalser, Werner. "Formal solutions to non-linear ODE". In From Divergent Power Series to Analytic Functions, 83–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073572.
Texto completo da fonteRedaud, Jeanne, Federico Bribiesca-Argomedo e Jean Auriol. "Practical Output Regulation and Tracking for Linear ODE-hyperbolic PDE-ODE Systems". In Advances in Distributed Parameter Systems, 143–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94766-8_7.
Texto completo da fonteTadie. "Oscillation Criteria for some Semi-Linear Emden–Fowler ODE". In Integral Methods in Science and Engineering, 607–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16727-5_51.
Texto completo da fonteGray, Alfred, Michael Mezzino e Mark A. Pinsky. "Using ODE to Solve Second-Order Linear Differential Equations". In Introduction to Ordinary Differential Equations with Mathematica®, 303–24. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2242-2_10.
Texto completo da fonteTang, Ying, Christophe Prieur e Antoine Girard. "Singular Perturbation Approach for Linear Coupled ODE-PDE Systems". In Delays and Interconnections: Methodology, Algorithms and Applications, 3–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11554-8_1.
Texto completo da fonteDey, Anindya. "Second Order Linear Ode: Solution Techniques & Qualitative Analysis". In Differential Equations, 284–379. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003205982-6.
Texto completo da fonteBotchev, Mike A. "Time-Exact Solution of Large Linear ODE Systems by Block Krylov Subspace Projections". In Mathematics in Industry, 397–401. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05365-3_55.
Texto completo da fonteCoster, C., e P. Habets. "Upper and Lower Solutions in the Theory of Ode Boundary Value Problems: Classical and Recent Results". In Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations, 1–78. Vienna: Springer Vienna, 1996. http://dx.doi.org/10.1007/978-3-7091-2680-6_1.
Texto completo da fonteRyzhikov, Ivan, Eugene Semenkin e Shakhnaz Akhmedova. "Linear ODE Coefficients and Initial Condition Estimation with Co-operation of Biology Related Algorithms". In Lecture Notes in Computer Science, 228–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41000-5_23.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Linear ODE"
Huo, Guanying, Xin Jiang, Danlei Ye, Cheng Su, Zehong Lu, Bolun Wang e Zhiming Zheng. "Linear ODE Based Geometric Modelling for Compressor Blades". In 2017 2nd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/eame-17.2017.53.
Texto completo da fonteSaba, David Bou, Federico Bribiesca-Argomedo, Michael Di Loreto e Damien Eberard. "Strictly Proper Control Design for the Stabilization of 2×2 Linear Hyperbolic ODE-PDE-ODE Systems". In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030248.
Texto completo da fonteMelezhik, A. "Polynomial solutions of the third-order Fuchsian linear ODE". In International Seminar Day on Diffraction Millennium Workshop. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/dd.2000.902361.
Texto completo da fonteNajafi, Mahmoud, M. Ramezanizadeh, Donald Fincher e H. Massah. "Analysis of a non-linear parabolic ODE via decomposition". In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913001.
Texto completo da fonteKhatibi, Seyedhamidreza, Guilherme Ozorio Cassol e Stevan Dubljevic. "Linear model predictive control for a cascade ODE-PDE system". In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147269.
Texto completo da fonteCristofaro, Andrea, e Francesco Ferrante. "Unknown Input Observer design for coupled PDE/ODE linear systems". In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9304374.
Texto completo da fonteVenkataraman, P. "Solving Inverse ODE Using Bezier Functions". In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86331.
Texto completo da fonteChaparova, Julia V., Eli P. Kalcheva e Miglena N. Koleva. "Numerical investigation of multiple periodic solutions of fourth-order semi-linear ODE". In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12): Proceedings of the 38th International Conference Applications of Mathematics in Engineering and Economics. AIP, 2012. http://dx.doi.org/10.1063/1.4766780.
Texto completo da fonteSerban, Radu, e Alan C. Hindmarsh. "CVODES: The Sensitivity-Enabled ODE Solver in SUNDIALS". In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85597.
Texto completo da fonteAuzinger, Winfried, Petro Pukach, Roksolyana Stolyarchuk e Myroslava Vovk. "Adaptive Numerics for Linear ODE Systems with Time-Dependent Data; Application in Photovoltaics". In 2020 IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). IEEE, 2020. http://dx.doi.org/10.1109/memstech49584.2020.9109442.
Texto completo da fonteRelatórios de organizações sobre o assunto "Linear ODE"
Vigil, M. G., e D. L. Marchi. Annular precision linear shaped charge flight termination system for the ODES program. Office of Scientific and Technical Information (OSTI), junho de 1994. http://dx.doi.org/10.2172/10165513.
Texto completo da fonteGardner C. J. Envelope Parameters for Linear Coupled Motion in Terms of the One-Turn Transfer Matrix. Office of Scientific and Technical Information (OSTI), julho de 1996. http://dx.doi.org/10.2172/1151345.
Texto completo da fonteMathias, Lon J., e Ralph M. Bozen. Linear and Star-Branched Siloxy-Silane Polymers: One Pot A-B Polymerization and End-Capping. Fort Belvoir, VA: Defense Technical Information Center, maio de 1992. http://dx.doi.org/10.21236/ada252195.
Texto completo da fonteTygert, Mark. Fast Algorithms for the Solution of Eigenfunction Problems for One-Dimensional Self-Adjoint Linear Differential Operators. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2005. http://dx.doi.org/10.21236/ada458901.
Texto completo da fonteBaader, Franz, Anees ul Mehdi e Hongkai Liu. Integrate Action Formalisms into Linear Temporal Description Logics. Technische Universität Dresden, 2009. http://dx.doi.org/10.25368/2022.172.
Texto completo da fonteHong Qin and Ronald C. Davidson. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field. Office of Scientific and Technical Information (OSTI), julho de 2011. http://dx.doi.org/10.2172/1029998.
Texto completo da fonteZOTOVA, V. A., E. G. SKACHKOVA e T. D. FEOFANOVA. METHODOLOGICAL FEATURES OF APPLICATION OF SIMILARITY THEORY IN THE CALCULATION OF NON-STATIONARY ONE-DIMENSIONAL LINEAR THERMAL CONDUCTIVITY OF A ROD. Science and Innovation Center Publishing House, abril de 2022. http://dx.doi.org/10.12731/2227-930x-2022-12-1-2-43-53.
Texto completo da fonteR.P. Ewing e D.W. Meek. One Line or Two? Perspectives on Piecewise Regression. Office of Scientific and Technical Information (OSTI), outubro de 2006. http://dx.doi.org/10.2172/899336.
Texto completo da fonteHanson, Hans, e Nicholas C. Kraus. T-Head Groin Advancements in One-Line Modeling (Genesis/T). Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2002. http://dx.doi.org/10.21236/ada612482.
Texto completo da fonteO'Connell, R. F. Quantum Transport, Noise and Non-Linear Dissipative Effects in One- and Two-Dimensional Systems and Associated Sub-Micron and Nanostructure Devices. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1992. http://dx.doi.org/10.21236/ada250895.
Texto completo da fonte