Artigos de revistas sobre o tema "Machine Learning Informé"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Machine Learning Informé".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Shoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Texto completo da fontePateras, Joseph, Pratip Rana, and Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning." Applied Sciences 13, no. 12 (2023): 6892. http://dx.doi.org/10.3390/app13126892.
Texto completo da fonteMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, et al. "Soil Science-Informed Machine Learning." Geoderma 452 (December 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Texto completo da fonteXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco, and Marco Leonetti. "Physics-informed machine learning for microscopy." EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Texto completo da fonteZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu, and Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils." INFORM International News on Fats, Oils, and Related Materials 31, no. 4 (2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Texto completo da fonteSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly." Annual Review of Vision Science 5, no. 1 (2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Texto completo da fonteArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan, and Philip T. Thiem. "Historical maps inform landform cognition in machine learning." Abstracts of the ICA 6 (August 11, 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Texto completo da fonteKarimpouli, Sadegh, and Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation." Geoscience Frontiers 11, no. 6 (2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Texto completo da fonteOneto, Luca, Sandro Ridella, and Davide Anguita. "Informed Machine Learning: Excess risk and generalization." Neurocomputing 646 (September 2025): 130521. https://doi.org/10.1016/j.neucom.2025.130521.
Texto completo da fonteZhang, Xi. "Application of Machine Learning in Stock Price Analysis." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Texto completo da fonteLiu, Yang, Ruo Jia, Jieping Ye, and Xiaobo Qu. "How machine learning informs ride-hailing services: A survey." Communications in Transportation Research 2 (December 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Texto completo da fonteWang, Yingxu, Yousheng Tian, and Kendal Hu. "Semantic Manipulations and Formal Ontology for Machine Learning based on Concept Algebra." International Journal of Cognitive Informatics and Natural Intelligence 5, no. 3 (2011): 1–29. http://dx.doi.org/10.4018/ijcini.2011070101.
Texto completo da fonteSchwartz, Oscar. "Competing Visions for AI." Digital Culture & Society 4, no. 1 (2018): 87–106. http://dx.doi.org/10.14361/dcs-2018-0107.
Texto completo da fonteHancock, Kristy. "Machine-learning Recommender Systems Can Inform Collection Development Decisions." Evidence Based Library and Information Practice 19, no. 2 (2024): 133–35. http://dx.doi.org/10.18438/eblip30521.
Texto completo da fonteBerk, Richard, and Jordan Hyatt. "Machine Learning Forecasts of Risk to Inform Sentencing Decisions." Federal Sentencing Reporter 27, no. 4 (2015): 222–28. http://dx.doi.org/10.1525/fsr.2015.27.4.222.
Texto completo da fontePandey, Mrs Arjoo. "Machine Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (2023): 864–69. http://dx.doi.org/10.22214/ijraset.2023.55224.
Texto completo da fonteSedej, Owen, Eric Mbonimpa, Trevor Sleight, and Jeremy Slagley. "Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review." Journal of Energy and Power Technology 4, no. 3 (2022): 1. http://dx.doi.org/10.21926/jept.2203027.
Texto completo da fonteMasamah, Ulfa, and Dadan Sumardani. "Utilization of The Thrasher and Rice Mill Machines in Composition Function Learning: A Hypothetical Learning Trajectory Design." Hipotenusa : Journal of Mathematical Society 3, no. 2 (2021): 144–57. http://dx.doi.org/10.18326/hipotenusa.v3i2.5994.
Texto completo da fontePazzani, Michael, Severine Soltani, Robert Kaufman, Samson Qian, and Albert Hsiao. "Expert-Informed, User-Centric Explanations for Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12280–86. http://dx.doi.org/10.1609/aaai.v36i11.21491.
Texto completo da fonteGao, Kaifu, Dong Chen, Alfred J. Robison, and Guo-Wei Wei. "Proteome-Informed Machine Learning Studies of Cocaine Addiction." Journal of Physical Chemistry Letters 12, no. 45 (2021): 11122–34. http://dx.doi.org/10.1021/acs.jpclett.1c03133.
Texto completo da fonteBarmparis, G. D., and G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning." Journal of the Optical Society of America B 38, no. 9 (2021): C120. http://dx.doi.org/10.1364/josab.430206.
Texto completo da fontePilania, G., K. J. McClellan, C. R. Stanek, and B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery." Journal of Chemical Physics 148, no. 24 (2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Texto completo da fonteKapoor, Taniya, Hongrui Wang, Alfredo Núñez, and Rolf Dollevoet. "Physics-informed machine learning for moving load problems." Journal of Physics: Conference Series 2647, no. 15 (2024): 152003. http://dx.doi.org/10.1088/1742-6596/2647/15/152003.
Texto completo da fonteBehtash, Mohammad, Sourav Das, Sina Navidi, Abhishek Sarkar, Pranav Shrotriya, and Chao Hu. "Physics-Informed Machine Learning for Battery Capacity Forecasting." ECS Meeting Abstracts MA2024-01, no. 2 (2024): 210. http://dx.doi.org/10.1149/ma2024-012210mtgabs.
Texto completo da fonteCele, Nomfundo, Alain Kibangou, and Walter Musakwa. "Machine Learning Analysis of Informal Minibus Taxi Driving." ITM Web of Conferences 69 (2024): 03003. https://doi.org/10.1051/itmconf/20246903003.
Texto completo da fonteBai, Tao, and Pejman Tahmasebi. "Accelerating geostatistical modeling using geostatistics-informed machine Learning." Computers & Geosciences 146 (January 2021): 104663. http://dx.doi.org/10.1016/j.cageo.2020.104663.
Texto completo da fonteLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, et al. "Physics informed machine learning for wind speed prediction." Energy 268 (April 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Texto completo da fonteTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers, and Neil D. Sims. "Resource-efficient machining through physics-informed machine learning." Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Texto completo da fonteYang, Shaoze. "A Study of Heart Disease Diagnosis Using Machine Learning and Data Mining." Journal of Clinical Medicine Research 5, no. 4 (2024): 565. https://doi.org/10.32629/jcmr.v5i4.3135.
Texto completo da fonteOneto, Luca, and Davide Chicco. "Eight quick tips for biologically and medically informed machine learning." PLOS Computational Biology 21, no. 1 (2025): e1012711. https://doi.org/10.1371/journal.pcbi.1012711.
Texto completo da fonteLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee, and Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning." Journal of the Acoustical Society of America 152, no. 4 (2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Texto completo da fonteThete, Prof Sharda, Siddheshwar Midgule, Nikesh Konde, and Suraj Kale. "Malware Detection Using Machine Learning and Deep Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 11 (2022): 1942–45. http://dx.doi.org/10.22214/ijraset.2022.47682.
Texto completo da fonteMidgule, Siddheshwar. "Malware Detection Using Machine Learning and Deep Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (2023): 4755–58. http://dx.doi.org/10.22214/ijraset.2023.52704.
Texto completo da fonteChen, James Ming, Mira Zovko, Nika Šimurina, and Vatroslav Zovko. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM2.5 Pollution." International Journal of Environmental Research and Public Health 18, no. 16 (2021): 8688. http://dx.doi.org/10.3390/ijerph18168688.
Texto completo da fonteO'Donncha, Fearghal, and Jon Grant. "Precision Aquaculture." IEEE Internet of Things Magazine 2, no. 4 (2020): 26–30. https://doi.org/10.1109/IOTM.0001.1900033.
Texto completo da fonteShah, Chirag Vinalbhai. "Transforming Retail: The Impact of AI and Machine Learning on Big Data Analytics." Global Research and Development Journals 8, no. 8 (2023): 1–8. http://dx.doi.org/10.70179/grdjev09i100010.
Texto completo da fonteSiontis, Konstantinos C., Xiaoxi Yao, James P. Pirruccello, Anthony A. Philippakis, and Peter A. Noseworthy. "How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?" Circulation Research 127, no. 1 (2020): 155–69. http://dx.doi.org/10.1161/circresaha.120.316401.
Texto completo da fonteLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability." AIP Advances 11, no. 2 (2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Texto completo da fonteMondal, B., T. Mukherjee, and T. DebRoy. "Crack free metal printing using physics informed machine learning." Acta Materialia 226 (March 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Texto completo da fonteHowland, Michael F., and John O. Dabiri. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning." Energies 12, no. 14 (2019): 2716. http://dx.doi.org/10.3390/en12142716.
Texto completo da fontevon Bloh, Malte, David Lobell, and Senthold Asseng. "Knowledge informed hybrid machine learning in agricultural yield prediction." Computers and Electronics in Agriculture 227 (December 2024): 109606. http://dx.doi.org/10.1016/j.compag.2024.109606.
Texto completo da fonteLiu, Hao-Xuan, Hai-Le Yan, Ying Zhao, et al. "Machine learning informed tetragonal ratio c/a of martensite." Computational Materials Science 233 (January 2024): 112735. http://dx.doi.org/10.1016/j.commatsci.2023.112735.
Texto completo da fonteOsorio, Julian D., Mario De Florio, Rob Hovsapian, Chrys Chryssostomidis, and George Em Karniadakis. "Physics-Informed machine learning for solar-thermal power systems." Energy Conversion and Management 327 (March 2025): 119542. https://doi.org/10.1016/j.enconman.2025.119542.
Texto completo da fonteTartakovsky, A. M., D. A. Barajas-Solano, and Q. He. "Physics-informed machine learning with conditional Karhunen-Loève expansions." Journal of Computational Physics 426 (February 2021): 109904. http://dx.doi.org/10.1016/j.jcp.2020.109904.
Texto completo da fonteHsu, Abigail, Baolian Cheng, and Paul A. Bradley. "Analysis of NIF scaling using physics informed machine learning." Physics of Plasmas 27, no. 1 (2020): 012703. http://dx.doi.org/10.1063/1.5130585.
Texto completo da fonteKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley, and Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae." Astrophysical Journal 940, no. 1 (2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Texto completo da fonteLang, Xiao, Da Wu, and Wengang Mao. "Physics-informed machine learning models for ship speed prediction." Expert Systems with Applications 238 (March 2024): 121877. http://dx.doi.org/10.1016/j.eswa.2023.121877.
Texto completo da fonteUganya, G., I. Bremnavas, K. V. Prashanth, M. Rajkumar, R. V. S. Lalitha, and Charanjeet Singh. "Empowering autonomous indoor navigation with informed machine learning techniques." Computers and Electrical Engineering 111 (October 2023): 108918. http://dx.doi.org/10.1016/j.compeleceng.2023.108918.
Texto completo da fontePiccialli, Francesco, Maizar Raissi, Felipe A. C. Viana, Giancarlo Fortino, Huimin Lu, and Amir Hussain. "Guest Editorial: Special Issue on Physics-Informed Machine Learning." IEEE Transactions on Artificial Intelligence 5, no. 3 (2024): 964–66. http://dx.doi.org/10.1109/tai.2023.3342563.
Texto completo da fonteKapoor, Taniya, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang, Alfredo Nunez, and Rolf Dollevoet. "Neural Oscillators for Generalization of Physics-Informed Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (2024): 13059–67. http://dx.doi.org/10.1609/aaai.v38i12.29204.
Texto completo da fonte