Siga este link para ver outros tipos de publicações sobre o tema: Magnetic resonance imaging and spectroscopy.

Artigos de revistas sobre o tema "Magnetic resonance imaging and spectroscopy"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Magnetic resonance imaging and spectroscopy".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Parida, Kalyani. "Magnetic Resonance Spectroscopy — Revisiting the Imaging Aspects of Brain Tumors". Journal of Medical Science And clinical Research 05, n.º 04 (30 de abril de 2017): 24205. http://dx.doi.org/10.18535/jmscr/v5i6.226.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

WATANABE, Hidehiro. "Magnetic Resonance Spectroscopy VI. Magnetic Resonance Imaging". Journal of the Spectroscopical Society of Japan 55, n.º 6 (2006): 408–19. http://dx.doi.org/10.5111/bunkou.55.408.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hamlin, Derek J. "Magnetic Resonance Imaging and Spectroscopy". Radiology 160, n.º 3 (setembro de 1986): 786. http://dx.doi.org/10.1148/radiology.160.3.786.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Virtama, Pekka. "Magnetic Resonance Imaging and Spectroscopy". Radiology 164, n.º 3 (setembro de 1987): 822. http://dx.doi.org/10.1148/radiology.164.3.822.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jackson, Graeme D., e Alan Connelly. "Magnetic resonance imaging and spectroscopy". Current Opinion in Neurology 9, n.º 2 (abril de 1996): 82–88. http://dx.doi.org/10.1097/00019052-199604000-00004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Andrews, Caroline, Andrew Simmons e Steve Williams. "Magnetic resonance imaging and spectroscopy". Physics Education 31, n.º 2 (março de 1996): 80–85. http://dx.doi.org/10.1088/0031-9120/31/2/015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hsu, Yuan-Yu, An-Tao Du, Norbert Schuff e Michael W. Weiner. "Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias". Journal of Geriatric Psychiatry and Neurology 14, n.º 3 (setembro de 2001): 145–66. http://dx.doi.org/10.1177/089198870101400308.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Goenka, Surabhi, Anand Kalegowda, Deepthi Naik e Ashok Kumar. "Diagnostic Efficacy of Proton Magnetic Resonance Spectroscopy and Diffusion Weighted Imaging in Cerebral Gliomas". International Journal of Neurology and Neurosurgery 9, n.º 2 (2017): 83–92. http://dx.doi.org/10.21088/ijnns.0975.0223.9217.2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Taylor, June S. "Nuclear Magnetic Resonance Imaging". Applied Spectroscopy Reviews 25, n.º 2 (junho de 1989): 127–71. http://dx.doi.org/10.1080/05704928908050168.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Rhodes, Christopher J. "Magnetic Resonance Spectroscopy". Science Progress 100, n.º 3 (setembro de 2017): 241–92. http://dx.doi.org/10.3184/003685017x14993478654307.

Texto completo da fonte
Resumo:
Since the original observation by Zeeman, that spectral lines can be affected by magnetic fields, ‘magnetic spectroscopy’ has evolved into the broad arsenal of techniques known as ‘magnetic resonance’. This review focuses on nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and muon spin resonance (μSR): methods which have provided unparalleled insight into the structures, reactivity and dynamics of molecules, and thereby contributed to a detailed understanding of important aspects of chemistry, and the materials, biomedical, and environmental sciences. Magnetic resonance imaging (MRI), in vivo magnetic resonance spectroscopy (MRS) and functional magnetic resonance spectroscopy (fMRS) are also described. EPR is outlined as a principal method for investigating free radicals, along with biomedical applications, and mention is given to the more recent innovation of pulsed EPR techniques. In the final section of the article, the various methods known as μSR are collected under the heading ‘muon spin resonance’, in order to emphasise their complementarity with the more familiar NMR and EPR.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Listinsky, Jay J. "Clinical Magnetic Resonance Imaging and Spectroscopy". Radiology 184, n.º 3 (setembro de 1992): 652. http://dx.doi.org/10.1148/radiology.184.3.652.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Bouchard, Alain. "Nuclear magnetic resonance imaging and spectroscopy". Current Opinion in Cardiology 5, n.º 6 (dezembro de 1990): 813–16. http://dx.doi.org/10.1097/00001573-199012000-00014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Ingwall, J. S. "Clinical Magnetic Resonance: Imaging and Spectroscopy". Journal of Magnetic Resonance, Series A 113, n.º 1 (março de 1995): 138. http://dx.doi.org/10.1006/jmra.1995.1072.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Leach Martin, O., e C. Sharp Jonathan. "5347217 Magnetic resonance spectroscopy and imaging". Magnetic Resonance Imaging 13, n.º 5 (janeiro de 1995): XV. http://dx.doi.org/10.1016/0730-725x(95)98041-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

James, R., e R. Knowles. "Clinical magnetic resonance: Imaging and spectroscopy". Clinical Imaging 16, n.º 1 (janeiro de 1992): 62–63. http://dx.doi.org/10.1016/0899-7071(92)90096-r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Tsirmpas, Charalampos, Kostas Giokas, Dimitra Iliopoulou e Dimitris Koutsouris. "Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Cloud Computing Framework". International Journal of Reliable and Quality E-Healthcare 1, n.º 4 (outubro de 2012): 1–12. http://dx.doi.org/10.4018/ijrqeh.2012100101.

Texto completo da fonte
Resumo:
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) are two non-invasive techniques that are increasingly being used to identify and quantify biochemical markers associated with certain diseases, e.g., choline in the case of cancer. The associating of MRI/MRS images, patient’s electronic health record, genome information, and environmental factors increase the precision of diagnosis and treatment. The authors present a collaboration framework based on Cloud Computing which allows analysis of MRI/MRS data based on advanced mathematical tools, advanced combination, and link discovery between different data types, so as to increase the precision and consequently avoid non-appropriate therapy and treatment plans.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Rangasami, Rajeswaran, Shereen Chidhara e Anupama Chandrasekharan. "Magnetic resonance imaging and magnetic resonance spectroscopy in Salmonella meningoencephalitis". Journal of Pediatric Neurosciences 11, n.º 1 (2016): 88. http://dx.doi.org/10.4103/1817-1745.181253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Sener, R. Nuri. "Phenylketonuria: Diffusion Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy". Journal of Computer Assisted Tomography 27, n.º 4 (julho de 2003): 541–43. http://dx.doi.org/10.1097/00004728-200307000-00016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Sauer, Heinrich, e Hans-Peter Volz. "Functional magnetic resonance imaging and magnetic resonance spectroscopy in schizophrenia". Current Opinion in Psychiatry 13, n.º 1 (janeiro de 2000): 21–26. http://dx.doi.org/10.1097/00001504-200001000-00005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

SCHAEFER, SAUL, GREGORY G. SCHWARTZ, JOEL R. GOBER, BARRY MASSIE e MICHAEL W. WEINER. "Magnetic Resonance Spectroscopy". Investigative Radiology 24, n.º 12 (dezembro de 1989): 969–72. http://dx.doi.org/10.1097/00004424-198912000-00009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Sijens, P. E., e M. Oudkerk. "Clinical Magnetic Resonance Spectroscopy". Imaging Decisions MRI 9, n.º 1 (abril de 2005): 23–38. http://dx.doi.org/10.1111/j.1617-0830.2005.00038.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Zarifi, Maria K., A. Aria Tzika, Loukas G. Astrakas, Tina Young Poussaint, Douglas C. Anthony e Basil T. Darras. "Magnetic Resonance Spectroscopy and Magnetic Resonance Imaging Findings in Krabbe's Disease". Journal Of Child Neurology 16, n.º 07 (2001): 522. http://dx.doi.org/10.2310/7010.2001.17863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Zarifi, Maria K., A. Aria Tzika, Loukas G. Astrakas, Tina Young Poussaint, Douglas C. Anthony e Basil T. Darras. "Magnetic Resonance Spectroscopy and Magnetic Resonance Imaging Findings in Krabbe's Disease". Journal of Child Neurology 16, n.º 7 (julho de 2001): 522–26. http://dx.doi.org/10.1177/088307380101600713.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Jolesz, Ferenc. "FUTURE OF MAGNETIC RESONANCE IMAGING AND MAGNETIC RESONANCE SPECTROSCOPY IN ONCOLOGY". ANZ Journal of Surgery 75, n.º 6 (junho de 2005): 372. http://dx.doi.org/10.1111/j.1445-2197.2005.03383.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Duara, Bijit Kumar, Pradipta Ray Choudhury e Ganesan Gopinath. "Magnetic resonance spectroscopic evaluation of intracranial tumors in adults". National Journal of Clinical Anatomy 04, n.º 02 (abril de 2015): 67–75. http://dx.doi.org/10.1055/s-0039-3401553.

Texto completo da fonte
Resumo:
Abstract Background and Aims: There is a lot of scope for Magnetic Resonance spectroscopy as a tool in diagnosing brain tumors in conjunction with conventional Magnetic Resonance sequences. It is considered to be a non invasive way to get the neurochemistry which will predict the histopathological diagnosis thereby preventing unnecessary surgery and associated morbidity. Here, a Magnetic Resonance spectroscopic imaging study of intra cranial tumors in adults was undertaken to assess the diagnostic usefulness of magnetic resonance spectroscopy in brain tumors. Materials & Methods: In the present study, 40 cases of brain tumors were included, among which 25 were male and rest were female with mean age 45 years. Results: The pathological 'H-MRS (proton magnetic resonance spectroscopy) spectra for various types of brain tumor were studied and tabulated. Conclusion: Magnetic Resonance Spectroscopy is a noninvasive, cost effective and easily repeatable when compared to the conventional brain biopsy procedure. Therefore brain tumor MR imaging should always complemented with dedicated spectroscopy sequences to deal with diagnostic dilemmas and improve patient treatment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Garg, Varun. "Evaluation of Intracranial Ring Lesions by Diffusion-Weighted Imaging and in Vivo Proton Magnetic Resonance Spectroscopy". Journal of Medical Science And clinical Research 04, n.º 11 (14 de novembro de 2016): 13929–34. http://dx.doi.org/10.18535/jmscr/v4i11.69.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Hampton, Daniel G., Adam E. Goldman-Yassen, Phillip Zhe Sun e Ranliang Hu. "Metabolic Magnetic Resonance Imaging in Neuroimaging: Magnetic Resonance Spectroscopy, Sodium Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer". Seminars in Ultrasound, CT and MRI 42, n.º 5 (outubro de 2021): 452–62. http://dx.doi.org/10.1053/j.sult.2021.07.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Hornak, Joseph P. "Magnetic resonance imaging of printed text". Concepts in Magnetic Resonance Part A 36A, n.º 6 (novembro de 2010): 347–48. http://dx.doi.org/10.1002/cmr.a.20169.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

FUKUDA, Aya, Luciano de Souza QUEIROZ e Fabiano REIS. "Gliosarcomas: magnetic resonance imaging findings". Arquivos de Neuro-Psiquiatria 78, n.º 2 (fevereiro de 2020): 112–20. http://dx.doi.org/10.1590/0004-282x20190158.

Texto completo da fonte
Resumo:
Abstract Background: Central nervous system (CNS) gliosarcoma (GSM) is a rare primary neoplasm characterized by the presence of glial and sarcomatous components. Objective: In this report, we describe the clinical and neuroimaging aspects of three cases of GSM and correlate these aspects with pathological findings. We also provide a brief review of relevant literature. Methods: Three patients were evaluated with magnetic resonance imaging (MRI), and biopsies confirmed the diagnosis of primary GSM, without previous radiotherapy. Results: The analysis of conventional sequences (T1, T1 after contrast injection, T2, Fluid attenuation inversion recovery, SWI and DWI/ADC map) and advanced (proton 1H MR spectroscopy and perfusion) revealed an irregular, necrotic aspect of the lesion, peritumoral edema/infiltration and isointensity of the solid component on a T2-weighted image. These features were associated with irregular and peripheral contrast enhancement, lipid and lactate peaks, increased choline and creatine levels in proton spectroscopy, increased relative cerebral blood volume (rCBV) in perfusion, multifocality and drop metastasis in one of the cases. Conclusion: These findings are discussed in relation to the general characteristics of GSM reported in the literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Uğurbil, Kâmil, Gregor Adriany, Peter Andersen, Wei Chen, Michael Garwood, Rolf Gruetter, Pierre-Gil Henry et al. "Ultrahigh field magnetic resonance imaging and spectroscopy". Magnetic Resonance Imaging 21, n.º 10 (dezembro de 2003): 1263–81. http://dx.doi.org/10.1016/j.mri.2003.08.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Waddington, John L., Eadbhard O'Callaghan, Conall Larkin, Oonagh Redmond, John Stack e Joseph T. Ennis. "Magnetic Resonance Imaging and Spectroscopy in Schizophrenia". British Journal of Psychiatry 157, S9 (dezembro de 1990): 56–65. http://dx.doi.org/10.1192/s000712500029185x.

Texto completo da fonte
Resumo:
In this new era of structural and functional neuroimaging technologies, it is the unsurpassed anatomical resolution of magnetic resonance imaging (MRI) (Andreasen, 1989; and Besson, this supplement) that has resulted in a new generation of studies on cerebral morphology in schizophrenia. With the recent development of whole-body magnets of very high (⩾ 1.5T) and uniform field strength, it has become possible to extend the scope of this approach to include measurement of certain fundamental neurochemical processes, via magnetic resonance spectroscopy (MRS: Hubesch et al, 1989; Lock et al, this supplement). The purpose of this article is to introduce and review critically the existing literature on the application of MRI and MRS to schizophrenia, and to give a preliminary account of some of our own recent studies in these areas.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Glunde, Kristine, e Zaver M. Bhujwalla. "Metabolic Tumor Imaging Using Magnetic Resonance Spectroscopy". Seminars in Oncology 38, n.º 1 (fevereiro de 2011): 26–41. http://dx.doi.org/10.1053/j.seminoncol.2010.11.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Moore, Gregory J., Mirko I. Hrovat e R. Gilberto González. "Simultaneous multinuclear magnetic resonance imaging and spectroscopy". Magnetic Resonance in Medicine 19, n.º 1 (maio de 1991): 105–12. http://dx.doi.org/10.1002/mrm.1910190110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Mahmood, Umar, e Jason A. Koutcher. "Magnetic resonance spectroscopy and imaging in radiology". Medical Physics 22, n.º 11 (novembro de 1995): 1935–41. http://dx.doi.org/10.1118/1.597643.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ugurbil, Kamil, e Michae Garwood. "4947119 Magnetic resonance imaging and spectroscopy methods". Magnetic Resonance Imaging 9, n.º 6 (janeiro de 1991): XXIV. http://dx.doi.org/10.1016/0730-725x(91)90554-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Rehr, Roger B. "Cardiovascular nuclear magnetic resonance imaging and spectroscopy". Current Problems in Cardiology 16, n.º 3 (março de 1991): 130–215. http://dx.doi.org/10.1016/0146-2806(91)90024-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Jung, Rex E., Charles Gasparovic, Robert S. Chavez, Arvind Caprihan, Ranee Barrow e Ronald A. Yeo. "Imaging intelligence with proton magnetic resonance spectroscopy". Intelligence 37, n.º 2 (março de 2009): 192–98. http://dx.doi.org/10.1016/j.intell.2008.10.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

LENKINSKI, ROBERT E. "Clinical Magnetic Resonance Spectroscopy:". Investigative Radiology 24, n.º 12 (dezembro de 1989): 1034–38. http://dx.doi.org/10.1097/00004424-198912000-00025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Penet, Marie-France, Jiefu Jin, Zhihang Chen e Zaver M. Bhujwalla. "Magnetic Resonance Imaging and Spectroscopy in Cancer Theranostic Imaging". Topics in Magnetic Resonance Imaging 25, n.º 5 (outubro de 2016): 215–21. http://dx.doi.org/10.1097/rmr.0000000000000098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Twieg, D. B., D. J. Meyerhoff, B. Hubesch, K. Roth, D. Sappey-Marinier, M. D. Boska, J. R. Gober, S. Schaefer e M. W. Weiner. "Phosphorus-31 magnetic resonance spectroscopy in humans by spectroscopic imaging: Localized spectroscopy and metabolite imaging". Magnetic Resonance in Medicine 12, n.º 3 (dezembro de 1989): 291–305. http://dx.doi.org/10.1002/mrm.1910120302.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Hanawa, Masatoshi. "4737714 Magnetic resonance spectroscopy". Magnetic Resonance Imaging 7, n.º 4 (julho de 1989): II—III. http://dx.doi.org/10.1016/0730-725x(89)90499-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Oner, A. Y., H. Celik, S. Akpek e N. Tokgoz. "Central nervous system aspergillosis: magnetic resonance imaging, diffusion-weighted imaging, and magnetic resonance spectroscopy features". Acta Radiologica 47, n.º 4 (maio de 2006): 408–12. http://dx.doi.org/10.1080/02841850600580325.

Texto completo da fonte
Resumo:
Aspergillus infection is invasive in nature in the immunosuppressed population and disseminates throughout the body, with the brain being a common site. Conventional magnetic resonance imaging (MRI) combined with diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) play a life-saving role in the early diagnosis and treatment monitoring of this potentially fatal infection. We present MRI, DWI, and MRS findings of a case of central nervous system aspergillosis with treatment follow-up.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Martínez-Pérez, Irene, Ángel Moreno, Juli Alonso, Jesús Aguas, Gerard Conesa, Antoni Capdevila e Carles Arús. "Diagnosis of brain abscess by magnetic resonance spectroscopy". Journal of Neurosurgery 86, n.º 4 (abril de 1997): 708–13. http://dx.doi.org/10.3171/jns.1997.86.4.0708.

Texto completo da fonte
Resumo:
✓ Two cases of brain abscess were diagnosed by combining magnetic resonance spectroscopy (MRS) and magnetic resonance (MR) imaging. The resonances observed in vivo were assigned by means of an in vitro MRS study of the exudates extracted during surgical aspiration of the abscesses. The technique of MRS was demonstrated to be very powerful in the differential diagnosis of brain abscesses from other brain pathologies such as neoplasms. Amino acids, probably originating from extracellular proteolysis, and other compounds, such as acetate, arising from bacterial metabolism, were visible in the MRS spectra of the abscess, whereas they are not present in spectra of neoplasms. In this sense, MRS complemented the information provided by MR imaging to achieve a correct diagnosis of brain abscesses and could be added to routine MR examinations with only a small increase in cost and time.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Nguyen, Jeremy B., Naveed Ahktar, Pablo N. Delgado e Lisa H. Lowe. "Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy of Intracranial Epidermoid Tumors". Critical Reviews in Computed Tomography 45, n.º 5-6 (janeiro de 2004): 389–427. http://dx.doi.org/10.3109/10408370490903543.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Aksoy, Direnç Özlem, e Alpay Alkan. "Neurometabolic Diseases in Children: Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Features". Current Medical Imaging Formerly Current Medical Imaging Reviews 15, n.º 3 (25 de fevereiro de 2019): 255–68. http://dx.doi.org/10.2174/1573405613666171123152451.

Texto completo da fonte
Resumo:
Background: Neurometabolic diseases are a group of diseases secondary to disorders in different metabolic pathways, which lead to white and/or gray matter of the brain involvement. </P><P> Discussion: Neurometabolic disorders are divided in two groups as dysmyelinating and demyelinating diseases. Because of wide spectrum of these disorders, there are many different classifications of neurometabolic diseases. We used the classification according to brain involvement areas. In radiological evaluation, MRI provides useful information for these disseases. Conclusion: Magnetic Resonance Spectroscopy (MRS) provides additional metabolic information for diagnosis and follow ups in childhood with neurometabolic diseases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Baburaj, Remya, Rajeswaran Rangasami e PS Rajakumar. "Magnetic resonance imaging and magnetic resonance spectroscopy in varicella zoster necrotizing encephalitis". Neurology India 66, n.º 3 (2018): 836. http://dx.doi.org/10.4103/0028-3886.232343.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Hoffmann, Chen, Bruria Ben-Zeev, Yair Anikster, Andreea Nissenkorn, Natan Brand, Jacob Kuint e Tammar Kushnir. "Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Isolated Sulfite Oxidase Deficiency". Journal of Child Neurology 22, n.º 10 (outubro de 2007): 1214–21. http://dx.doi.org/10.1177/0883073807306260.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Shukla-Dave, Amita, Nigar Fatma, Raja Roy, S. Srivastava, R. K. Chatterjee, V. Govindaraju, A. Kasi Viswanathan e P. Raghunathan. "1H Magnetic resonance imaging and 31P magnetic resonance spectroscopy in experimental filariasis". Magnetic Resonance Imaging 15, n.º 10 (janeiro de 1997): 1193–98. http://dx.doi.org/10.1016/s0730-725x(97)00180-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Fründ, R. "Magnetic resonance imaging MRI and magnetic resonance spectroscopy MRS of intracranial lipomas". Frontiers in Bioscience 2, n.º 6 (1997): f13–16. http://dx.doi.org/10.2741/a237.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Chiappa, Keith H., Rosamund A. Hill, Frank Huang-Hellinger e Bruce G. Jenkins. "Photosensitive Epilepsy Studied by Functional Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy". Epilepsia 40, s4 (abril de 1999): 3–7. http://dx.doi.org/10.1111/j.1528-1157.1999.tb00899.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia