Artigos de revistas sobre o tema "Mandelbrot sets"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Mandelbrot sets".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
LIU, XIANG-DONG, ZHI-JIE LI, XUE-YE ANG, and JIN-HAI ZHANG. "MANDELBROT AND JULIA SETS OF ONE-PARAMETER RATIONAL FUNCTION FAMILIES ASSOCIATED WITH NEWTON'S METHOD." Fractals 18, no. 02 (June 2010): 255–63. http://dx.doi.org/10.1142/s0218348x10004841.
Texto completo da fonteMu, Beining. "Fuzzy Julia Sets and Fuzzy Superior Julia Sets." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 375–80. http://dx.doi.org/10.54097/5c5hp748.
Texto completo da fonteJha, Ketan, and Mamta Rani. "Control of Dynamic Noise in Transcendental Julia and Mandelbrot Sets by Superior Iteration Method." International Journal of Natural Computing Research 7, no. 2 (April 2018): 48–59. http://dx.doi.org/10.4018/ijncr.2018040104.
Texto completo da fonteDanca, Marius-F. "Mandelbrot Set as a Particular Julia Set of Fractional Order, Equipotential Lines and External Rays of Mandelbrot and Julia Sets of Fractional Order." Fractal and Fractional 8, no. 1 (January 19, 2024): 69. http://dx.doi.org/10.3390/fractalfract8010069.
Texto completo da fonteTassaddiq, Asifa, Muhammad Tanveer, Muhammad Azhar, Waqas Nazeer, and Sania Qureshi. "A Four Step Feedback Iteration and Its Applications in Fractals." Fractal and Fractional 6, no. 11 (November 9, 2022): 662. http://dx.doi.org/10.3390/fractalfract6110662.
Texto completo da fonteYan, De Jun, Xiao Dan Wei, Hong Peng Zhang, Nan Jiang, and Xiang Dong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated from Complex Non-Analytic Iteration Fm(z)=z¯m+c." Applied Mechanics and Materials 347-350 (August 2013): 3019–23. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3019.
Texto completo da fonteKOZMA, ROBERT T., and ROBERT L. DEVANEY. "Julia sets converging to filled quadratic Julia sets." Ergodic Theory and Dynamical Systems 34, no. 1 (August 21, 2012): 171–84. http://dx.doi.org/10.1017/etds.2012.115.
Texto completo da fonteAl-Salami, Hassanein Q. "Some Properties of the Mandelbrot Sets M(Q_α)". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 31, № 2 (29 червня 2023): 263–69. http://dx.doi.org/10.29196/jubpas.v31i2.4683.
Texto completo da fonteSekovanov, Valeriy S., Larisa B. Rybina, and Kseniya Yu Strunkina. "The study of the frames of Mandelbrot sets of polynomials of the second degree as a means of developing the originality of students' thinking." Vestnik Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, no. 4 (2019): 193–99. http://dx.doi.org/10.34216/2073-1426-2019-25-4-193-199.
Texto completo da fonteWang, Feng Ying, Li Ming Du, and Zi Yang Han. "The Construction for Generalized Mandelbrot Sets of the Frieze Group." Advanced Materials Research 756-759 (September 2013): 2562–66. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2562.
Texto completo da fonteKauko, Virpi. "Shadow trees of Mandelbrot sets." Fundamenta Mathematicae 180, no. 1 (2003): 35–87. http://dx.doi.org/10.4064/fm180-1-4.
Texto completo da fonteSun, Y. Y., and X. Y. Wang. "Noise-perturbed quaternionic Mandelbrot sets." International Journal of Computer Mathematics 86, no. 12 (December 2009): 2008–28. http://dx.doi.org/10.1080/00207160903131228.
Texto completo da fonteWang, Xingyuan, Zhen Wang, Yahui Lang, and Zhenfeng Zhang. "Noise perturbed generalized Mandelbrot sets." Journal of Mathematical Analysis and Applications 347, no. 1 (November 2008): 179–87. http://dx.doi.org/10.1016/j.jmaa.2008.04.032.
Texto completo da fonteJha, Ketan, and Mamta Rani. "Estimation of Dynamic Noise in Mandelbrot Map." International Journal of Artificial Life Research 7, no. 2 (July 2017): 1–20. http://dx.doi.org/10.4018/ijalr.2017070101.
Texto completo da fonteCHEN, YI-CHIUAN, TOMOKI KAWAHIRA, HUA-LUN LI, and JUAN-MING YUAN. "FAMILY OF INVARIANT CANTOR SETS AS ORBITS OF DIFFERENTIAL EQUATIONS II: JULIA SETS." International Journal of Bifurcation and Chaos 21, no. 01 (January 2011): 77–99. http://dx.doi.org/10.1142/s0218127411028295.
Texto completo da fonteAshish, Mamta Rani, and Renu Chugh. "Julia sets and Mandelbrot sets in Noor orbit." Applied Mathematics and Computation 228 (February 2014): 615–31. http://dx.doi.org/10.1016/j.amc.2013.11.077.
Texto completo da fonteDOLOTIN, V., and A. MOROZOV. "ON THE SHAPES OF ELEMENTARY DOMAINS OR WHY MANDELBROT SET IS MADE FROM ALMOST IDEAL CIRCLES?" International Journal of Modern Physics A 23, no. 22 (September 10, 2008): 3613–84. http://dx.doi.org/10.1142/s0217751x08040330.
Texto completo da fonteMork, Leah K., and Darin J. Ulness. "Visualization of Mandelbrot and Julia Sets of Möbius Transformations." Fractal and Fractional 5, no. 3 (July 17, 2021): 73. http://dx.doi.org/10.3390/fractalfract5030073.
Texto completo da fonteWANG, XING-YUAN, QING-YONG LIANG, and JUAN MENG. "CHAOS AND FRACTALS IN C–K MAP." International Journal of Modern Physics C 19, no. 09 (September 2008): 1389–409. http://dx.doi.org/10.1142/s0129183108012935.
Texto completo da fonteLIAW, SY-SANG. "FIND THE MANDELBROT-LIKE SETS IN ANY MAPPING." Fractals 10, no. 02 (June 2002): 137–46. http://dx.doi.org/10.1142/s0218348x02001282.
Texto completo da fonteYAN, DEJUN, XIANGDONG LIU, and WEIYONG ZHU. "A STUDY OF MANDELBROT AND JULIA SETS GENERATED FROM A GENERAL COMPLEX CUBIC ITERATION." Fractals 07, no. 04 (December 1999): 433–37. http://dx.doi.org/10.1142/s0218348x99000438.
Texto completo da fonteBUCHANAN, WALTER, JAGANNATHAN GOMATAM, and BONNIE STEVES. "GENERALIZED MANDELBROT SETS FOR MEROMORPHIC COMPLEX AND QUATERNIONIC MAPS." International Journal of Bifurcation and Chaos 12, no. 08 (August 2002): 1755–77. http://dx.doi.org/10.1142/s0218127402005443.
Texto completo da fonteAbbas, Mujahid, Hira Iqbal, and Manuel De la Sen. "Generation of Julia and Mandelbrot Sets via Fixed Points." Symmetry 12, no. 1 (January 2, 2020): 86. http://dx.doi.org/10.3390/sym12010086.
Texto completo da fonteBandt, Christoph, and Nguyen Viet Hung. "Fractaln-gons and their Mandelbrot sets." Nonlinearity 21, no. 11 (October 10, 2008): 2653–70. http://dx.doi.org/10.1088/0951-7715/21/11/009.
Texto completo da fonteSHIAH, AICHYUN, KIM-KHOON ONG, and ZDZISLAW E. MUSIELAK. "FRACTAL IMAGES OF GENERALIZED MANDELBROT SETS." Fractals 02, no. 01 (March 1994): 111–21. http://dx.doi.org/10.1142/s0218348x94000107.
Texto completo da fontePickover, Clifford A. "A note on inverted mandelbrot sets." Visual Computer 6, no. 4 (July 1990): 227–29. http://dx.doi.org/10.1007/bf02341047.
Texto completo da fonteZhang, Yongping, and Weihua Sun. "Synchronization and coupling of Mandelbrot sets." Nonlinear Dynamics 64, no. 1-2 (October 9, 2010): 59–63. http://dx.doi.org/10.1007/s11071-010-9845-9.
Texto completo da fonteWang, Xing-yuan, Pei-jun Chang, and Ni-ni Gu. "Additive perturbed generalized Mandelbrot–Julia sets." Applied Mathematics and Computation 189, no. 1 (June 2007): 754–65. http://dx.doi.org/10.1016/j.amc.2006.11.137.
Texto completo da fonteSmirnova, Elena Sa, Valery S. Sekovanov, Larisa B. Rybina, and Roman Al Shchepin. "Performing a multi-stage mathematical information task "Framing the Mandelbrot set of families of polynomials of the third degree and remarkable curves"." Vestnik of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics 30, no. 1 (June 28, 2024): 63–72. http://dx.doi.org/10.34216/2073-1426-2024-30-1-63-72.
Texto completo da fonteZou, Cui, Abdul Aziz Shahid, Asifa Tassaddiq, Arshad Khan, and Maqbool Ahmad. "Mandelbrot Sets and Julia Sets in Picard-Mann Orbit." IEEE Access 8 (2020): 64411–21. http://dx.doi.org/10.1109/access.2020.2984689.
Texto completo da fonteFarris, Salma M. "Generalized Mandelbrot Sets of a Family of Polynomials P n z = z n + z + c ; n ≥ 2." International Journal of Mathematics and Mathematical Sciences 2022 (February 22, 2022): 1–9. http://dx.doi.org/10.1155/2022/4510088.
Texto completo da fonteWang, Feng Ying, Li Ming Du, and Zi Yang Han. "Two Partitioning Algorithms for Generating of M Sets of the Frieze Group." Applied Mechanics and Materials 336-338 (July 2013): 2238–41. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.2238.
Texto completo da fonteCai, Zong Wen, and Artde D. Kin Tak Lam. "A Study on Mandelbrot Sets to Generate Visual Aesthetic Fractal Patterns." Applied Mechanics and Materials 311 (February 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.311.111.
Texto completo da fonteWANG, XINGYUAN, QINGYONG LIANG, and JUAN MENG. "DYNAMIC ANALYSIS OF THE CAROTID–KUNDALINI MAP." Modern Physics Letters B 22, no. 04 (February 10, 2008): 243–62. http://dx.doi.org/10.1142/s0217984908014717.
Texto completo da fonteKang, Shinmin, Arif Rafiq, Abdul Latif, Abdul Shahid, and Faisal Alif. "Fractals through modified iteration scheme." Filomat 30, no. 11 (2016): 3033–46. http://dx.doi.org/10.2298/fil1611033k.
Texto completo da fontePEHERSTORFER, FRANZ, and CHRISTOPH STROH. "JULIA AND MANDELBROT SETS OF CHEBYSHEV FAMILIES." International Journal of Bifurcation and Chaos 11, no. 09 (September 2001): 2463–81. http://dx.doi.org/10.1142/s0218127401003577.
Texto completo da fonteMurali, Arunachalam, and Krishnan Muthunagai. "Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity." AIMS Mathematics 9, no. 8 (2024): 20221–44. http://dx.doi.org/10.3934/math.2024985.
Texto completo da fonteBlankers, Vance, Tristan Rendfrey, Aaron Shukert, and Patrick Shipman. "Julia and Mandelbrot Sets for Dynamics over the Hyperbolic Numbers." Fractal and Fractional 3, no. 1 (February 20, 2019): 6. http://dx.doi.org/10.3390/fractalfract3010006.
Texto completo da fonteCheng, Jin, and Jian-rong Tan. "Generalization of 3D Mandelbrot and Julia sets." Journal of Zhejiang University-SCIENCE A 8, no. 1 (January 2007): 134–41. http://dx.doi.org/10.1631/jzus.2007.a0134.
Texto completo da fonteQi, Hengxiao, Muhammad Tanveer, Muhammad Shoaib Saleem, and Yuming Chu. "Anti Mandelbrot Sets via Jungck-M Iteration." IEEE Access 8 (2020): 194663–75. http://dx.doi.org/10.1109/access.2020.3033733.
Texto completo da fonteÁlvarez, G., M. Romera, G. Pastor, and F. Montoya. "Determination of Mandelbrot Sets Hyperbolic Component Centres." Chaos, Solitons & Fractals 9, no. 12 (December 1998): 1997–2005. http://dx.doi.org/10.1016/s0960-0779(98)00046-0.
Texto completo da fonteBeck, Christian. "Physical meaning for Mandelbrot and Julia sets." Physica D: Nonlinear Phenomena 125, no. 3-4 (January 1999): 171–82. http://dx.doi.org/10.1016/s0167-2789(98)00243-7.
Texto completo da fonteAgarwal, Rashi, and Vishal Agarwal. "Dynamic noise perturbed generalized superior Mandelbrot sets." Nonlinear Dynamics 67, no. 3 (July 13, 2011): 1883–91. http://dx.doi.org/10.1007/s11071-011-0115-2.
Texto completo da fonteZhang, Yong-Ping. "Feedback control and synchronization of Mandelbrot sets." Chinese Physics B 22, no. 1 (January 2013): 010502. http://dx.doi.org/10.1088/1674-1056/22/1/010502.
Texto completo da fonteEndler, Antonio, and Paulo C. Rech. "From Mandelbrot-like sets to Arnold tongues." Applied Mathematics and Computation 222 (October 2013): 559–63. http://dx.doi.org/10.1016/j.amc.2013.08.001.
Texto completo da fonteRomera, M., G. Pastor, A. B. Orue, D. Arroyo, and F. Montoya. "Coupling Patterns of External Arguments in the Multiple-Spiral Medallions of the Mandelbrot Set." Discrete Dynamics in Nature and Society 2009 (2009): 1–14. http://dx.doi.org/10.1155/2009/135637.
Texto completo da fonteTassaddiq, Asifa, Amna Kalsoom, Maliha Rashid, Kainat Sehr, and Dalal Khalid Almutairi. "Generating Geometric Patterns Using Complex Polynomials and Iterative Schemes." Axioms 13, no. 3 (March 18, 2024): 204. http://dx.doi.org/10.3390/axioms13030204.
Texto completo da fonteWANG, XING-YUAN, and LI-NA GU. "RESEARCH FRACTAL STRUCTURES OF GENERALIZED M-J SETS USING THREE ALGORITHMS." Fractals 16, no. 01 (March 2008): 79–88. http://dx.doi.org/10.1142/s0218348x08003764.
Texto completo da fonteMork, L. K., Trenton Vogt, Keith Sullivan, Drew Rutherford, and Darin J. Ulness. "Exploration of Filled-In Julia Sets Arising from Centered Polygonal Lacunary Functions." Fractal and Fractional 3, no. 3 (July 12, 2019): 42. http://dx.doi.org/10.3390/fractalfract3030042.
Texto completo da fonteROCHON, DOMINIC. "A GENERALIZED MANDELBROT SET FOR BICOMPLEX NUMBERS." Fractals 08, no. 04 (December 2000): 355–68. http://dx.doi.org/10.1142/s0218348x0000041x.
Texto completo da fonte