Literatura científica selecionada sobre o tema "Maurer-Cartan element"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Maurer-Cartan element".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Maurer-Cartan element"
Ward, Benjamin. "Maurer–Cartan elements and cyclic operads". Journal of Noncommutative Geometry 10, n.º 4 (2016): 1403–64. http://dx.doi.org/10.4171/jncg/263.
Texto completo da fonteChen, Zhuo, Mathieu Stiénon e Ping Xu. "Geometry of Maurer-Cartan Elements on Complex Manifolds". Communications in Mathematical Physics 297, n.º 1 (31 de março de 2010): 169–87. http://dx.doi.org/10.1007/s00220-010-1029-4.
Texto completo da fonteDas, Apurba, e Satyendra Kumar Mishra. "The L∞-deformations of associative Rota–Baxter algebras and homotopy Rota–Baxter operators". Journal of Mathematical Physics 63, n.º 5 (1 de maio de 2022): 051703. http://dx.doi.org/10.1063/5.0076566.
Texto completo da fonteBuijs, Urtzi, Yves Félix, Aniceto Murillo e Daniel Tanré. "Maurer–Cartan Elements in the Lie Models of Finite Simplicial Complexes". Canadian Mathematical Bulletin 60, n.º 3 (1 de setembro de 2017): 470–77. http://dx.doi.org/10.4153/cmb-2017-003-7.
Texto completo da fonteChtioui, T., A. Hajjaji, S. Mabrouk e A. Makhlouf. "Cohomology and deformations of twisted O-operators on 3-Lie algebras". Filomat 37, n.º 21 (2023): 6977–94. http://dx.doi.org/10.2298/fil2321977c.
Texto completo da fonteLiu, Jiefeng, e Yunhe Sheng. "Homotopy Poisson algebras, Maurer–Cartan elements and Dirac structures of CLWX 2-algebroids". Journal of Noncommutative Geometry 15, n.º 1 (21 de janeiro de 2021): 147–93. http://dx.doi.org/10.4171/jncg/398.
Texto completo da fonteDas, Apurba. "Cohomology and deformations of weighted Rota–Baxter operators". Journal of Mathematical Physics 63, n.º 9 (1 de setembro de 2022): 091703. http://dx.doi.org/10.1063/5.0093066.
Texto completo da fonteXu, Senrong, Wei Wang e Jia Zhao. "Twisted Rota-Baxter operators on Hom-Lie algebras". AIMS Mathematics 9, n.º 2 (2023): 2619–40. http://dx.doi.org/10.3934/math.2024129.
Texto completo da fonteGoncharov, Alexander B. "Hodge correlators". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, n.º 748 (1 de março de 2019): 1–138. http://dx.doi.org/10.1515/crelle-2016-0013.
Texto completo da fonteHAAK, G., M. SCHMIDT e R. SCHRADER. "GROUP THEORETIC FORMULATION OF THE SEGAL-WILSON APPROACH TO INTEGRABLE SYSTEMS WITH APPLICATIONS". Reviews in Mathematical Physics 04, n.º 03 (setembro de 1992): 451–99. http://dx.doi.org/10.1142/s0129055x92000121.
Texto completo da fonteTeses / dissertações sobre o assunto "Maurer-Cartan element"
Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan". Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.
Texto completo da fonteThe goal of this thesis is to explore relative Rota-Baxter operators in the context of ternary algebras of both Lie and Jordan types. We mainly consider Lie triple systems, 3-Lie algebras and ternary Jordan algebras. The study covers their structure, cohomology, deformations, and their connection with the Yang-Baxter equations. The work is divided into three main parts. The first part aims first to introduce and study a graded Lie algebra whose Maurer-Cartan elements are Lie triple systems. It turns out to be the controlling algebra of Lie triple systems deformations and fits with the adjoint cohomology theory of Lie triple systems introduced by Yamaguti. In addition, we introduce the notion of relative Rota-Baxter operators on Lie triple systems and construct a Lie 3-algebra as a special case of L∞-algebras, where the Maurer-Cartan elements correspond to relative Rota-Baxter operators. In the second part, we introduce the concept of twisted relative Rota-Baxter operators on 3-Lie algebras and construct an L∞-algebra, where the Maurer-Cartan elements are twisted relative Rota-Baxter operators. This allows us to define the Chevalley-Eilenberg cohomology of a twisted relative Rota-Baxter operator. In the last part, we deal with a representation theory of ternary Jordan algebras. In particular, we introduce and discuss the concept of coherent ternary Jordan algebras. We then define relative Rota-Baxter operators for ternary Jordan algebras and discuss solutions ofthe ternary Jordan Yang-Baxter equation involving relative Rota-Baxter operators. Moreover, we investigate ternary pre-Jordan algebras as the underlying algebraic structure of relative Rota-Baxter operators
Robert-Nicoud, Daniel. "Opérades et espaces de Maurer-Cartan". Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD048.
Texto completo da fonteThis thesis is inscribed in the topics of operad theory and homotopical algebra. Suppose we are given a type of algebras, a type of coalgebras, and a relationship between those types of algebraic structures (encoded by an operad, a cooperad, and a twisting morphism respectively). Then, it is possible to endow the space of linear maps from a coalgebra C and an algebra A with a natural structure of Lie algebra up to homotopy. We call the resulting homotopy Lie algebra the convolution algebra of A and C. In this thesis, we study the theory of convolution algebras and their compatibility with the tools of homotopical algebra : infinity morphisms and the homotopy transfer theorem. After doing that, we apply this theory to various domains, such as derived deformation theory and rational homotopy theory. In the first case, we use the tools we developed to construct an universal Lie algebra representing the space of Maurer-Cartan elements, a fundamental object of deformation theory. In the second case, we generalize a result of Berglund on rational models for mapping spaces between pointed topological spaces
Capítulos de livros sobre o assunto "Maurer-Cartan element"
Buijs, Urtzi, Yves Félix, Aniceto Murillo e Daniel Tanré. "Maurer–Cartan Elements and the Deligne Groupoid". In Lie Models in Topology, 93–115. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54430-0_4.
Texto completo da fonteTu, Loring W. "The Maurer–Cartan Form". In Introductory Lectures on Equivariant Cohomology, 121–26. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691191751.003.0015.
Texto completo da fonte