Artigos de revistas sobre o tema "Microfabricatin"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Microfabricatin".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
De Maria, C., L. Grassi, F. Vozzi, A. Ahluwalia, and G. Vozzi. "Development of a novel micro-ablation system to realise micrometric and well-defined hydrogel structures for tissue engineering applications." Rapid Prototyping Journal 20, no. 6 (2014): 490–98. http://dx.doi.org/10.1108/rpj-03-2012-0022.
Texto completo da fonteDu, L. Q., C. Liu, H. J. Liu, J. Qin, N. Li, and Rui Yang. "Design and Fabrication of Micro Hot Embossing Mold for Microfluidic Chip Used in Flow Cytometry." Key Engineering Materials 339 (May 2007): 246–51. http://dx.doi.org/10.4028/www.scientific.net/kem.339.246.
Texto completo da fonteHan, Lei, Pingmei Ming, Shen Niu, Guangbin Yang, Dongdong Li, and Kuaile Cheng. "Microfabricating Mirror-like Surface Precision Micro-Sized Amorphous Alloy Structures Using Jet-ECM Process." Micromachines 15, no. 3 (2024): 375. http://dx.doi.org/10.3390/mi15030375.
Texto completo da fonteFolch, A., A. Ayon, O. Hurtado, M. A. Schmidt, and M. Toner. "Molding of Deep Polydimethylsiloxane Microstructures for Microfluidics and Biological Applications." Journal of Biomechanical Engineering 121, no. 1 (1999): 28–34. http://dx.doi.org/10.1115/1.2798038.
Texto completo da fonteBanerjee, Arunav S., Richard Blaikie, and Wen Hui Wang. "Microfabrication Process for XYZ Stage-Needle Assembly for Cellular Delivery and Surgery." Materials Science Forum 700 (September 2011): 195–98. http://dx.doi.org/10.4028/www.scientific.net/msf.700.195.
Texto completo da fontePARK, W. B., J. H. CHOI, C. W. PARK, et al. "FABRICATION OF MICRO PROBE-TYPE ELECTRODES FOR MICROELECTRO-CHEMICAL MACHINING USING MICROFABRICATION." International Journal of Modern Physics B 24, no. 15n16 (2010): 2639–44. http://dx.doi.org/10.1142/s0217979210065398.
Texto completo da fonteLiu, Yue, Megan Chesnut, Amy Guitreau, et al. "Microfabrication of low-cost customisable counting chambers for standardised estimation of sperm concentration." Reproduction, Fertility and Development 32, no. 9 (2020): 873. http://dx.doi.org/10.1071/rd19154.
Texto completo da fonteAlvarez-Escobar, Marta, Sidónio C. Freitas, Derek Hansford, Fernando J. Monteiro, and Alejandro Pelaez-Vargas. "Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces." International Journal of Dentistry 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/4219625.
Texto completo da fonteStarodubov, Andrey, Roman Torgashov, Viktor Galushka, et al. "Microfabrication, Characterization, and Cold-Test Study of the Slow-Wave Structure of a Millimeter-Band Backward-Wave Oscillator with a Sheet Electron Beam." Electronics 11, no. 18 (2022): 2858. http://dx.doi.org/10.3390/electronics11182858.
Texto completo da fonteCreff, Justine, Laurent Malaquin, and Arnaud Besson. "In vitro models of intestinal epithelium: Toward bioengineered systems." Journal of Tissue Engineering 12 (January 2021): 204173142098520. http://dx.doi.org/10.1177/2041731420985202.
Texto completo da fonteYang, Jian Zhong, Li Chao Pan, C. L. Kang, et al. "Advance of the Micro-Magnetometer MEMSMag Research." Advanced Materials Research 60-61 (January 2009): 241–45. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.241.
Texto completo da fonteZuchowicz, Nikolas C., Jorge A. Belgodere, Yue Liu, Ignatius Semmes, William Todd Monroe, and Terrence R. Tiersch. "Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories." Fishes 7, no. 1 (2022): 49. http://dx.doi.org/10.3390/fishes7010049.
Texto completo da fonteBakajin, Olgica, Eric Fountain, Keith Morton, Stephen Y. Chou, James C. Sturm, and Robert H. Austin. "Materials Aspects in Micro- and Nanofluidic Systems Applied to Biology." MRS Bulletin 31, no. 2 (2006): 108–13. http://dx.doi.org/10.1557/mrs2006.24.
Texto completo da fonteAhn, Jeong, and Kim. "Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices." Micromachines 10, no. 8 (2019): 508. http://dx.doi.org/10.3390/mi10080508.
Texto completo da fonteWang, Nan, Fu Li Hsiao, Moorthi Palaniapan, et al. "A Novel Micromechanical Resonator Using Two-Dimensional Phononic Crystal Slab." Advanced Materials Research 254 (May 2011): 195–98. http://dx.doi.org/10.4028/www.scientific.net/amr.254.195.
Texto completo da fonteVejella, Sujitha, and Sazzadur Chowdhury. "A MEMS Ultra-Wideband (UWB) Power Sensor with a Fe-Co-B Core Planar Inductor and a Vibrating Diaphragm Capacitor." Sensors 21, no. 11 (2021): 3858. http://dx.doi.org/10.3390/s21113858.
Texto completo da fontePelaez-Vargas, A., D. Gallego-Perez, N. Ferrell, M. H. Fernandes, D. Hansford, and F. J. Monteiro. "Early Spreading and Propagation of Human Bone Marrow Stem Cells on Isotropic and Anisotropic Topographies of Silica Thin Films Produced via Microstamping." Microscopy and Microanalysis 16, no. 6 (2010): 670–76. http://dx.doi.org/10.1017/s1431927610094158.
Texto completo da fonteHerrault, Florian, M. Yajima, M. Chen, C. McGuire, and A. Margomenos. "Silicon-Embedded RF Micro-Inductors for Ultra-Compact RF Subsystems." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, DPC (2015): 000939–57. http://dx.doi.org/10.4071/2015dpc-tp44.
Texto completo da fonteMIRSHEKARI, GHOLAMREZA, MARTIN BROUILLETTE, and LUC G. FRÉCHETTE. "THROUGH SILICON VIAS INTEGRABLE WITH THIN-FILM PIEZOELECTRIC STRUCTURES." International Journal of Nanoscience 11, no. 04 (2012): 1240015. http://dx.doi.org/10.1142/s0219581x12400157.
Texto completo da fonteHagemann, Cathleen, Matthew C. D. Bailey, Eugenia Carraro, et al. "Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs." PLOS Biology 22, no. 3 (2024): e3002503. http://dx.doi.org/10.1371/journal.pbio.3002503.
Texto completo da fonteZhang, Muyang, Haonan Li, Xionghui Li, et al. "Parylene-C Modified OSTE Molds for PDMS Microfluidic Chip Fabrication and Applications in Plasma Separation and Polymorphic Crystallization." Biosensors 15, no. 6 (2025): 388. https://doi.org/10.3390/bios15060388.
Texto completo da fonteKudo, Ryota, Shin Usuki, Satoru Takahashi, and Kiyoshi Takamasu. "Simulation-Based Analysis of Influence of Error on Super-Resolution Optical Inspection." International Journal of Automation Technology 5, no. 2 (2011): 167–72. http://dx.doi.org/10.20965/ijat.2011.p0167.
Texto completo da fonteChen, Xing, Da Fu Cui, H. Li, H. Y. Cai, J. H. Sun, and L. L. Zhang. "Microfluidic Device for Fluorescence Immunoassays by Using Porous Matrix." Advanced Materials Research 216 (March 2011): 645–48. http://dx.doi.org/10.4028/www.scientific.net/amr.216.645.
Texto completo da fonteLee, Seung Jae, Byung Kim, Jin Sang Lee, et al. "Three-Dimensional Microfabrication System for Scaffolds in Tissue Engineering." Key Engineering Materials 326-328 (December 2006): 723–26. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.723.
Texto completo da fonteWiley, J. James, Raymond E. Ideker, William M. Smith, and Andrew E. Pollard. "Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays." American Journal of Physiology-Heart and Circulatory Physiology 289, no. 6 (2005): H2468—H2477. http://dx.doi.org/10.1152/ajpheart.00570.2005.
Texto completo da fonteBrunette, D. M., and B. Chehroudi. "The Effects of the Surface Topography of Micromachined Titanium Substrata on Cell Behavior in Vitro and in Vivo." Journal of Biomechanical Engineering 121, no. 1 (1999): 49–57. http://dx.doi.org/10.1115/1.2798042.
Texto completo da fonteChen, Da Feng, He Jun Du, Wei Hua Li, and Hai Qing Gong. "Holding Capacity of a Dielectrophoretic Barrier for Microparticles." Key Engineering Materials 326-328 (December 2006): 281–84. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.281.
Texto completo da fonteNoori, Y. J., S. Thomas, S. Ramadan, et al. "Electrodeposited WS2 monolayers on patterned graphene." 2D Materials 9, no. 1 (2021): 015025. http://dx.doi.org/10.1088/2053-1583/ac3dd6.
Texto completo da fonteMujeeb-U-Rahman, Muhammad, Dvin Adalian, and Axel Scherer. "Fabrication of Patterned Integrated Electrochemical Sensors." Journal of Nanotechnology 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/467190.
Texto completo da fonteShetty, A., and G. Srinivasan. "MICROFABRICATED ORAL DRUG DELIVERY SYSTEMS." INDIAN DRUGS 52, no. 11 (2015): 5–13. http://dx.doi.org/10.53879/id.52.11.10393.
Texto completo da fonteXia, Yaoqi. "Wearable Sensors for Smart Electronics." Applied and Computational Engineering 122, no. 1 (2025): 137–43. https://doi.org/10.54254/2755-2721/2025.19905.
Texto completo da fonteDe Pascali, Chiara, Luca Francioso, Lucia Giampetruzzi, et al. "Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients." Sensors 21, no. 5 (2021): 1847. http://dx.doi.org/10.3390/s21051847.
Texto completo da fonteShubin, Ivan, John E. Cunningham, Darko Popovic, et al. "Ferro-Electrically Enhanced Proximity Communication." International Symposium on Microelectronics 2010, no. 1 (2010): 000084–92. http://dx.doi.org/10.4071/isom-2010-ta3-paper4.
Texto completo da fonteOllé, Enric Perarnau, Josep Farré-Lladós, and Jasmina Casals-Terré. "Advancements in Microfabricated Gas Sensors and Microanalytical Tools for the Sensitive and Selective Detection of Odors." Sensors 20, no. 19 (2020): 5478. http://dx.doi.org/10.3390/s20195478.
Texto completo da fonteEl-Beshlawy, Menna, and Hassan Arida. "Modified Screen-Printed Microchip for Potentiometric Detection of Terbinafine Drugs." Journal of Chemistry 2022 (November 22, 2022): 1–8. http://dx.doi.org/10.1155/2022/9114162.
Texto completo da fonteErten, Ahmet Can. "Effect of Mold Materials Used During Hot Embossing on Feature Fidelity for Microfabrication in Cyclic Olefin Polymer (COP) Substrate." Afyon Kocatepe University Journal of Sciences and Engineering 24, no. 2 (2024): 457–64. http://dx.doi.org/10.35414/akufemubid.1345104.
Texto completo da fonteWei, Peng, Ning Li, and Lishuang Feng. "A Type of Two-Photon Microfabrication System and Experimentations." ISRN Mechanical Engineering 2011 (January 26, 2011): 1–8. http://dx.doi.org/10.5402/2011/278095.
Texto completo da fontePiyasena, Menake E., and Steven W. Graves. "The intersection of flow cytometry with microfluidics and microfabrication." Lab Chip 14, no. 6 (2014): 1044–59. http://dx.doi.org/10.1039/c3lc51152a.
Texto completo da fonteInomata, Naoki, Masaya Toda, and Takahito Ono. "Microfabricated Temperature-Sensing Devices Using a Microfluidic Chip for Biological Applications." International Journal of Automation Technology 12, no. 1 (2018): 15–23. http://dx.doi.org/10.20965/ijat.2018.p0015.
Texto completo da fonteLiang, Shu Hao, Chuen Horng Tsai, and Chaug Liang Hsu. "Micro Fabrication Design of a Planar Methanol Sensor." Materials Science Forum 505-507 (January 2006): 1069–74. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.1069.
Texto completo da fonteTANIGAWA, Hiroshi. "Semiconductor microfabrication technologies." Journal of the Japan Society for Precision Engineering 54, no. 9 (1988): 1651–55. http://dx.doi.org/10.2493/jjspe.54.1651.
Texto completo da fonteMATSUI, Shinji. "Electron beam microfabrication." Journal of the Japan Society for Precision Engineering 55, no. 2 (1989): 279–84. http://dx.doi.org/10.2493/jjspe.55.279.
Texto completo da fonteWeibel, Douglas B., Willow R. DiLuzio, and George M. Whitesides. "Microfabrication meets microbiology." Nature Reviews Microbiology 5, no. 3 (2007): 209–18. http://dx.doi.org/10.1038/nrmicro1616.
Texto completo da fonteLutz, B. R., J. Chen, and D. T. Schwartz. "Microfluidics without microfabrication." Proceedings of the National Academy of Sciences 100, no. 8 (2003): 4395–98. http://dx.doi.org/10.1073/pnas.0831077100.
Texto completo da fonteDeckman, H. W. "Microfabrication cellular phosphors." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7, no. 6 (1989): 1832. http://dx.doi.org/10.1116/1.584675.
Texto completo da fonteFUJITA, Hiroyuki. "Microfabrication and Micromachines." Kobunshi 44, no. 4 (1995): 230–34. http://dx.doi.org/10.1295/kobunshi.44.230.
Texto completo da fonteZhang, Jie, Bo-Ya Dong, Jingchun Jia, et al. "Electrochemical buckling microfabrication." Chemical Science 7, no. 1 (2016): 697–701. http://dx.doi.org/10.1039/c5sc02644j.
Texto completo da fonteShoji, Shuichi, and Masayoshi Esashi. "Microfabrication and microsensors." Applied Biochemistry and Biotechnology 41, no. 1-2 (1993): 21–34. http://dx.doi.org/10.1007/bf02918525.
Texto completo da fonteMORIMOTO, Mitsutaka. "Microfabrication for VLSI." Journal of the Society of Mechanical Engineers 92, no. 853 (1989): 1050–55. http://dx.doi.org/10.1299/jsmemag.92.853_1050.
Texto completo da fonteGwozdz, P. S. "NSF Microfabrication Workshops." IEEE Transactions on Education 39, no. 2 (1996): 211–16. http://dx.doi.org/10.1109/13.502068.
Texto completo da fonte