Artigos de revistas sobre o tema "Microfluidic processes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Microfluidic processes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Babikian, Sarkis, Brian Soriano, G. P. Li, and Mark Bachman. "Laminate Materials for Microfluidic PCBs." International Symposium on Microelectronics 2012, no. 1 (2012): 000162–68. http://dx.doi.org/10.4071/isom-2012-ta54.
Texto completo da fonteBianchi, Jhonatan Rafael de Oliveira, Lucimara Gaziola de la Torre, and Ana Leticia Rodrigues Costa. "Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type." Foods 12, no. 18 (2023): 3385. http://dx.doi.org/10.3390/foods12183385.
Texto completo da fonteAlexandre-Franco, María F., Rahmani Kouider, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa, and Awf Al-Kassir. "Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview." Micromachines 15, no. 9 (2024): 1137. http://dx.doi.org/10.3390/mi15091137.
Texto completo da fonteBouhid de Aguiar, Izabella, and Karin Schroën. "Microfluidics Used as a Tool to Understand and Optimize Membrane Filtration Processes." Membranes 10, no. 11 (2020): 316. http://dx.doi.org/10.3390/membranes10110316.
Texto completo da fontePrajitna, Stefanus H., Christian Harito, and Brian Yuliarto. "Cost-Effective Manufacturing of Microfluidics Through the Utilization of Direct Ink Writing." Emerging Science Journal 9, no. 1 (2025): 1–11. https://doi.org/10.28991/esj-2025-09-01-01.
Texto completo da fonteGiri, Kiran, and Chia-Wen Tsao. "Recent Advances in Thermoplastic Microfluidic Bonding." Micromachines 13, no. 3 (2022): 486. http://dx.doi.org/10.3390/mi13030486.
Texto completo da fonteTsur, Elishai Ezra. "Computer-Aided Design of Microfluidic Circuits." Annual Review of Biomedical Engineering 22, no. 1 (2020): 285–307. http://dx.doi.org/10.1146/annurev-bioeng-082219-033358.
Texto completo da fonteMarzban, Mostapha, Ehsan Yazdanpanah Moghadam, Javad Dargahi, and Muthukumaran Packirisamy. "Microfabrication Bonding Process Optimization for a 3D Multi-Layer PDMS Suspended Microfluidics." Applied Sciences 12, no. 9 (2022): 4626. http://dx.doi.org/10.3390/app12094626.
Texto completo da fonteNaderi, Arman, Nirveek Bhattacharjee, and Albert Folch. "Digital Manufacturing for Microfluidics." Annual Review of Biomedical Engineering 21, no. 1 (2019): 325–64. http://dx.doi.org/10.1146/annurev-bioeng-092618-020341.
Texto completo da fonteCha, Haotian, Hedieh Fallahi, Yuchen Dai, et al. "Multiphysics microfluidics for cell manipulation and separation: a review." Lab on a Chip 22, no. 3 (2022): 423–44. http://dx.doi.org/10.1039/d1lc00869b.
Texto completo da fonteKurniawan, Yehezkiel Steven, Arif Cahyo Imawan, Sathuluri Ramachandra Rao, et al. "Microfluidics Era in Chemistry Field: A Review." Journal of the Indonesian Chemical Society 2, no. 1 (2019): 7. http://dx.doi.org/10.34311/jics.2019.02.1.7.
Texto completo da fonteBAI, BOFENG, ZHENGYUAN LUO, TIANJIAN LU, and FENG XU. "NUMERICAL SIMULATION OF CELL ADHESION AND DETACHMENT IN MICROFLUIDICS." Journal of Mechanics in Medicine and Biology 13, no. 01 (2013): 1350002. http://dx.doi.org/10.1142/s0219519413500024.
Texto completo da fonteCarvalho, Bruna G., Bruno T. Ceccato, Mariano Michelon, Sang W. Han, and Lucimara G. de la Torre. "Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application." Pharmaceutics 14, no. 1 (2022): 141. http://dx.doi.org/10.3390/pharmaceutics14010141.
Texto completo da fonteVitorino, Rui, Sofia Guedes, João Pinto da Costa, and Václav Kašička. "Microfluidics for Peptidomics, Proteomics, and Cell Analysis." Nanomaterials 11, no. 5 (2021): 1118. http://dx.doi.org/10.3390/nano11051118.
Texto completo da fonteChen, Yu-Shih, Chun-Hao Huang, Ping-Ching Pai, Jungmok Seo, and Kin Fong Lei. "A Review on Microfluidics-Based Impedance Biosensors." Biosensors 13, no. 1 (2023): 83. http://dx.doi.org/10.3390/bios13010083.
Texto completo da fonteBhavana, Patil*1 Mansi Choudhary2 Alok Mishra3 Paramprit Singh4 Dipesh Tripathi5. "Microfluidic Technology Advances: "Fabrication and Applications of Microfluidic Devices: A comprehensive Review." International Journal of Pharmaceutical Sciences 3, no. 3 (2025): 3227–48. https://doi.org/10.5281/zenodo.15111201.
Texto completo da fonteLifton, Victor A. "Microfluidics: an enabling screening technology for enhanced oil recovery (EOR)." Lab on a Chip 16, no. 10 (2016): 1777–96. http://dx.doi.org/10.1039/c6lc00318d.
Texto completo da fonteAcosta-Cuevas, José M., Mario A. García-Ramírez, Gabriela Hinojosa-Ventura, Álvaro J. Martínez-Gómez, Víctor H. Pérez-Luna, and Orfil González-Reynoso. "Surface Roughness Analysis of Microchannels Featuring Microfluidic Devices Fabricated by Three Different Materials and Methods." Coatings 13, no. 10 (2023): 1676. http://dx.doi.org/10.3390/coatings13101676.
Texto completo da fonteRoy, Sanjib, Ramesh Kumar, Argha Acooli, et al. "Transforming Nanomaterial Synthesis through Advanced Microfluidic Approaches: A Review on Accessing Unrestricted Possibilities." Journal of Composites Science 8, no. 10 (2024): 386. http://dx.doi.org/10.3390/jcs8100386.
Texto completo da fonteDai, Chuankai, Xiaoming Liu, Rongyu Tang, Jiping He, and Tatsuo Arai. "A Review on Microfluidic Platforms Applied to Nerve Regeneration." Applied Sciences 12, no. 7 (2022): 3534. http://dx.doi.org/10.3390/app12073534.
Texto completo da fonteLiu, Xing, and Xiaolin Zheng. "Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis." Sensors 24, no. 19 (2024): 6359. http://dx.doi.org/10.3390/s24196359.
Texto completo da fonteSavitri, Goparaju. "Advancement in Generation and Application of Microfluidic Chip Technology." International Journal of Pharmaceutical Sciences and Nanotechnology(IJPSN) 17, no. 2 (2024): 7277–98. http://dx.doi.org/10.37285/ijpsn.2024.17.2.9.
Texto completo da fonteHamad, Eyad M., Ahmed Albagdady, Samer Al-Gharabli, et al. "Optimizing Rapid Prototype Development Through Femtosecond Laser Ablation and Finite Element Method Simulation for Enhanced Separation in Microfluidics." Journal of Nanofluids 12, no. 7 (2023): 1868–79. http://dx.doi.org/10.1166/jon.2023.2102.
Texto completo da fonteMu, Ruojun, Nitong Bu, Jie Pang, Lin Wang, and Yue Zhang. "Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications." Foods 11, no. 22 (2022): 3727. http://dx.doi.org/10.3390/foods11223727.
Texto completo da fonteSun, Yueqiu, Nianzuo Yu, Junhu Zhang, and Bai Yang. "Advances in Microfluidic Single-Cell RNA Sequencing and Spatial Transcriptomics." Micromachines 16, no. 4 (2025): 426. https://doi.org/10.3390/mi16040426.
Texto completo da fonteKotz, Frederik, Markus Mader, Nils Dellen, et al. "Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate." Micromachines 11, no. 9 (2020): 873. http://dx.doi.org/10.3390/mi11090873.
Texto completo da fonteLundy, Terence. "Advanced Confocal Microscopy An Essential Technique for Microfluidics Development." Microscopy Today 14, no. 1 (2006): 8–13. http://dx.doi.org/10.1017/s1551929500055127.
Texto completo da fonteMea, H., and J. Wan. "Microfluidics-enabled functional 3D printing." Biomicrofluidics 16, no. 2 (2022): 021501. http://dx.doi.org/10.1063/5.0083673.
Texto completo da fonteMumtaz, Zilwa, Zubia Rashid, Ashaq Ali, et al. "Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches." Biosensors 13, no. 6 (2023): 584. http://dx.doi.org/10.3390/bios13060584.
Texto completo da fonteTang, Xiaoqing, Qiang Huang, Tatsuo Arai, and Xiaoming Liu. "Cell pairing for biological analysis in microfluidic devices." Biomicrofluidics 16, no. 6 (2022): 061501. http://dx.doi.org/10.1063/5.0095828.
Texto completo da fonteRen, Liqing, and Dongqing Li. "Theoretical Studies of Microfluidic Dispensing Processes." Journal of Colloid and Interface Science 254, no. 2 (2002): 384–95. http://dx.doi.org/10.1006/jcis.2002.8645.
Texto completo da fonteDaugbjerg, Thomas Schrøder, Loïc Crouzier, Alexandra Delvallée, et al. "Measurement of wettability and surface roughness for metrology and quality control in microfluidics." International Journal of Metrology and Quality Engineering 16 (2025): 2. https://doi.org/10.1051/ijmqe/2024021.
Texto completo da fonteRenkó, József Bálint, Attila Bonyár, and Péter János Szabó. "Development of Microfluidic Cell for Liquid Phase Layer Deposition Tracking." Acta Materialia Transylvanica 3, no. 2 (2020): 94–97. http://dx.doi.org/10.33924/amt-2020-02-08.
Texto completo da fonteSri, Sowmya Veeravalli* Bhaskararaju vatchavai Soni Saisri Bandi Roshini Teja Manikanteshwari Bobbili Shaman Mohammad Lakshmanudu Bhukya. "The Microfluidic Revolution in Medical Diagnostics." International Journal Of Pharmaceutical Sciences 2, no. 12 (2024): 2803–10. https://doi.org/10.5281/zenodo.14542487.
Texto completo da fonteErfantalab, Sobhan, Ali Hooshyar Zare, and Amin Jenabi. "Ambient Temperature Dependence of Diffusion Rate in a Microfluidic Channel." Key Engineering Materials 605 (April 2014): 127–30. http://dx.doi.org/10.4028/www.scientific.net/kem.605.127.
Texto completo da fonteYip, Hon Ming, John C. S. Li, Kai Xie, et al. "Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/608184.
Texto completo da fonteGelado, Sofia H., César Quilodrán-Casas, and Loïc Chagot. "Enhancing Microdroplet Image Analysis with Deep Learning." Micromachines 14, no. 10 (2023): 1964. http://dx.doi.org/10.3390/mi14101964.
Texto completo da fonteSmeraldo, Alessio, Alfonso Maria Ponsiglione, Paolo Antonio Netti, and Enza Torino. "Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics." Biomedicines 9, no. 11 (2021): 1551. http://dx.doi.org/10.3390/biomedicines9111551.
Texto completo da fonteVarghese, Stefna, Dr Poonam Parashar, and Dr. Pragya. "Applications of Microfluidics in Biomedical and Pharmaceutical Fields-An Overview." International Journal of Preventive Medicine and Health 5, no. 4 (2025): 5–10. https://doi.org/10.54105/ijpmh.d1066.05040525.
Texto completo da fonteDr., Pragya. "Applications of Microfluidics in Biomedical and Pharmaceutical Fields -An Overview." International Journal of Preventive Medicine and Health (IJPMH) 5, no. 4 (2025): 5–10. https://doi.org/10.54105/ijpmh.D1066.05040525/.
Texto completo da fonteZhang, Yuxin, Tim Cole, Guolin Yun, et al. "Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators." Micromachines 12, no. 6 (2021): 604. http://dx.doi.org/10.3390/mi12060604.
Texto completo da fonteBirendra Kumar Julee Choudhary, Sundararajan Ananiah Durai, and Nabihah Ahmad. "Smart Microfluidic Devices for Point-Of-Care Applications." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 114, no. 1 (2024): 119–33. http://dx.doi.org/10.37934/arfmts.114.1.119133.
Texto completo da fonteVogelaar, Alicia, Samantha Marcotte, Jiaqi Cheng, Benazir Oluoch, and Jennica Zaro. "Use of Microfluidics to Prepare Lipid-Based Nanocarriers." Pharmaceutics 15, no. 4 (2023): 1053. http://dx.doi.org/10.3390/pharmaceutics15041053.
Texto completo da fontePereponov, Dmitrii, Alexandra Scerbacova, Vitaly Kazaku, et al. "Application of microfluidics to optimize oil and gas field development technologies." Kazakhstan journal for oil & gas industry 1, no. 1 (2023): 57–73. http://dx.doi.org/10.54859/kjogi108639.
Texto completo da fonteSarbashev, K. A., M. V. Nikiforova, D. P. Shulga, M. A. Shishkina, and S. A. Tarasov. "Flow and mixing processes in a passive mixing microfluidic chip: Parameters’ estimation and colorimetric analysis." Fine Chemical Technologies 14, no. 5 (2019): 39–50. http://dx.doi.org/10.32362/2410-6593-2019-14-5-39-50.
Texto completo da fonteWu, Haiwa, Jing Zhu, Yao Huang, Daming Wu, and Jingyao Sun. "Microfluidic-Based Single-Cell Study: Current Status and Future Perspective." Molecules 23, no. 9 (2018): 2347. http://dx.doi.org/10.3390/molecules23092347.
Texto completo da fonteGao, Run Ze, Vivian Ngoc Tram Mai, Nicholas Levinski, et al. "A novel air microfluidics-enabled soft robotic sleeve: Toward realizing innovative lymphedema treatment." Biomicrofluidics 16, no. 3 (2022): 034101. http://dx.doi.org/10.1063/5.0079898.
Texto completo da fonteDelgado, P., O. Oshinowo, M. E. Fay, et al. "Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics." Biomicrofluidics 17, no. 1 (2023): 014104. http://dx.doi.org/10.1063/5.0122771.
Texto completo da fonteDr., Pragya. "Applications of Microfluidics in Biomedical and Pharmaceutical Fields -An Overview." International Journal of Preventive Medicine and Health (IJPMH) 5, no. 4 (2025): 5–10. https://doi.org/10.54105/ijpmh.D1066.05040525.
Texto completo da fonteShi, Jingyu, Yu Zhang, and Mo Yang. "Recent development of microfluidics-based platforms for respiratory virus detection." Biomicrofluidics 17, no. 2 (2023): 024104. http://dx.doi.org/10.1063/5.0135778.
Texto completo da fonte