Artigos de revistas sobre o tema "Microgravity Science and Applications Program"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Microgravity Science and Applications Program".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Pala, Renzo, Sara Cruciani, Alessia Manca, et al. "Mesenchymal Stem Cell Behavior under Microgravity: From Stress Response to a Premature Senescence." International Journal of Molecular Sciences 24, no. 9 (2023): 7753. http://dx.doi.org/10.3390/ijms24097753.
Texto completo da fontePietronigro, Frank. "Research Project Number 33: Investigating the Creative Process in a Microgravity Environment." Leonardo 33, no. 3 (2000): 169–77. http://dx.doi.org/10.1162/002409400552469.
Texto completo da fonteKicza, Mary E., and Robert C. Rhome. "Long-range national and international planning for the National Aeronautics and Space Administration's Microgravity Science and Applications Program." Advances in Space Research 13, no. 7 (1993): 5–12. http://dx.doi.org/10.1016/0273-1177(93)90349-g.
Texto completo da fonteCACCIAPUOTI, LUIGI, and OLIVIER MINSTER. "FUNDAMENTAL PHYSICS ACTIVITIES IN THE HME DIRECTORATE OF THE EUROPEAN SPACE AGENCY." International Journal of Modern Physics D 16, no. 12a (2007): 1957–66. http://dx.doi.org/10.1142/s0218271807011255.
Texto completo da fonteIzzo, Luigi Gennaro, and Giovanna Aronne. "Root Tropisms: New Insights Leading the Growth Direction of the Hidden Half." Plants 10, no. 2 (2021): 220. http://dx.doi.org/10.3390/plants10020220.
Texto completo da fonteKomarova, Margarita Y., Sergey V. Rozhkov, Oksana A. Ivanova, et al. "Cultured Myoblasts Derived from Rat Soleus Muscle Show Altered Regulation of Proliferation and Myogenesis during the Course of Mechanical Unloading." International Journal of Molecular Sciences 23, no. 16 (2022): 9150. http://dx.doi.org/10.3390/ijms23169150.
Texto completo da fonteHunter, Steve L., Charles Dischinger, and Samantha Estes. "Three-Dimensional Simulation: Microgravity Environments and Applications." Journal of Spacecraft and Rockets 39, no. 2 (2002): 194–97. http://dx.doi.org/10.2514/2.3819.
Texto completo da fonteDiaz Palacios, Fabio, Guillermo Sahonero Alvarez, Gabriel Rojas, Miguel Clavijo, Jhon Ordoñez, and Khalil Nallar. "Exploring Microgravity Liquid Printing Based on Resin Solidification for Outer Space Applications." Key Engineering Materials 956 (September 29, 2023): 195–202. http://dx.doi.org/10.4028/p-xtb4yz.
Texto completo da fonteSabbatini, Maurizio, Valentina Bonetto, Valeria Magnelli, Candida Lorusso, Francesco Dondero, and Maria Angela Masini. "Microgravity as an Anti-Metastatic Agent in an In Vitro Glioma Model." Biophysica 3, no. 4 (2023): 636–50. http://dx.doi.org/10.3390/biophysica3040043.
Texto completo da fonteWilson, William W., and Lawrence J. DeLucas. "Applications of the second virial coefficient: protein crystallization and solubility." Acta Crystallographica Section F Structural Biology Communications 70, no. 5 (2014): 543–54. http://dx.doi.org/10.1107/s2053230x1400867x.
Texto completo da fonteEppelbaum, Lev V. "Review of Environmental and Geological Microgravity Applications and Feasibility of Its Employment at Archaeological Sites in Israel." International Journal of Geophysics 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/927080.
Texto completo da fonteLee, Mark C., and John F. Newcomb. "Applying the Kano Methodology to Meet Customer Requirements: NASA's Microgravity Science Program." Quality Management Journal 4, no. 3 (1997): 95–106. http://dx.doi.org/10.1080/10686967.1997.11918805.
Texto completo da fonteGrodsinsky, Carlos M., and Mark S. Whorton. "Survey of Active Vibration Isolation Systems for Microgravity Applications." Journal of Spacecraft and Rockets 37, no. 5 (2000): 586–96. http://dx.doi.org/10.2514/2.3631.
Texto completo da fonteRoss, Byron, Oemer Akay, Alvia Mohammad-Yousuf, et al. "Synergistic Microfluidic and Optical Performance Enhancements of Photoelectrodes for Space Applications." ECS Meeting Abstracts MA2023-01, no. 30 (2023): 1801. http://dx.doi.org/10.1149/ma2023-01301801mtgabs.
Texto completo da fonteGillies, Donald C. "Microscopy & Microanalytical Support for NASA's Microgravity Materials Science Programs." Microscopy Today 12, no. 5 (2004): 8–11. http://dx.doi.org/10.1017/s1551929500056236.
Texto completo da fonteWinkelmaier, Garrett, Kosar Jabbari, Lung-Chang Chien, Peter Grabham, Bahram Parvin, and Janice Pluth. "Influence of Simulated Microgravity on Mammary Epithelial Cells Grown as 2D and 3D Cultures." International Journal of Molecular Sciences 24, no. 8 (2023): 7615. http://dx.doi.org/10.3390/ijms24087615.
Texto completo da fonteYuan, Mengqin, Haizhou Liu, Shunheng Zhou, et al. "Integrative Analysis of Regulatory Module Reveals Associations of Microgravity with Dysfunctions of Multi-body Systems and Tumorigenesis." International Journal of Molecular Sciences 21, no. 20 (2020): 7585. http://dx.doi.org/10.3390/ijms21207585.
Texto completo da fonteFairlie, R., and J. F. Griffiths. "Oscillatory combustion in closed vessels under microgravity." Mathematical and Computer Modelling 36, no. 3 (2002): 245–57. http://dx.doi.org/10.1016/s0895-7177(02)00123-1.
Texto completo da fonteWilfinger, William W., Carol S. Baker, Elaine L. Kunze, Allen T. Phillips, and Roy H. Hammerstedt. "Versatile Fluid-Mixing Device for Cell and Tissue Microgravity Research Applications." Journal of Spacecraft and Rockets 33, no. 1 (1996): 126–30. http://dx.doi.org/10.2514/3.55717.
Texto completo da fonteNeelam, Srujana, Brian Richardson, Richard Barker, et al. "Changes in Nuclear Shape and Gene Expression in Response to Simulated Microgravity Are LINC Complex-Dependent." International Journal of Molecular Sciences 21, no. 18 (2020): 6762. http://dx.doi.org/10.3390/ijms21186762.
Texto completo da fonteChen, Zhihao, Yan Zhang, Fan Zhao та ін. "Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression". International Journal of Molecular Sciences 21, № 4 (2020): 1259. http://dx.doi.org/10.3390/ijms21041259.
Texto completo da fonteMorabito, Caterina, Simone Guarnieri, Alessandra Cucina, Mariano Bizzarri, and Maria A. Mariggiò. "Antioxidant Strategy to Prevent Simulated Microgravity-Induced Effects on Bone Osteoblasts." International Journal of Molecular Sciences 21, no. 10 (2020): 3638. http://dx.doi.org/10.3390/ijms21103638.
Texto completo da fonteGrimm, Daniela. "Microgravity and Space Medicine." International Journal of Molecular Sciences 22, no. 13 (2021): 6697. http://dx.doi.org/10.3390/ijms22136697.
Texto completo da fonteBauer, Johann. "Microgravity and Cell Adherence." International Journal of Molecular Sciences 21, no. 6 (2020): 2214. http://dx.doi.org/10.3390/ijms21062214.
Texto completo da fonteYim, Jaewoo, Sung Won Cho, Beomhee Kim, Sungwoo Park, Yong Hee Han, and Sang Woo Seo. "Transcriptional Profiling of the Probiotic Escherichia coli Nissle 1917 Strain under Simulated Microgravity." International Journal of Molecular Sciences 21, no. 8 (2020): 2666. http://dx.doi.org/10.3390/ijms21082666.
Texto completo da fonteLi, Wang, Xinyu Shu, Xiaoyu Zhang, et al. "Potential Roles of YAP/TAZ Mechanotransduction in Spaceflight-Induced Liver Dysfunction." International Journal of Molecular Sciences 24, no. 3 (2023): 2197. http://dx.doi.org/10.3390/ijms24032197.
Texto completo da fonteCazzaniga, Alessandra, Fabian Ille, Simon Wuest, et al. "Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering." International Journal of Molecular Sciences 21, no. 23 (2020): 8908. http://dx.doi.org/10.3390/ijms21238908.
Texto completo da fonteSimon, Ágota, Adriana Smarandache, Vicentiu Iancu, and Mihail Lucian Pascu. "Stability of Antimicrobial Drug Molecules in Different Gravitational and Radiation Conditions in View of Applications during Outer Space Missions." Molecules 26, no. 8 (2021): 2221. http://dx.doi.org/10.3390/molecules26082221.
Texto completo da fonteDietz, Carlo, Manfred Infanger, Alexander Romswinkel, Florian Strube, and Armin Kraus. "Apoptosis Induction and Alteration of Cell Adherence in Human Lung Cancer Cells under Simulated Microgravity." International Journal of Molecular Sciences 20, no. 14 (2019): 3601. http://dx.doi.org/10.3390/ijms20143601.
Texto completo da fonteThiel, Cora S., Christian Vahlensieck, Timothy Bradley, Svantje Tauber, Martin Lehmann, and Oliver Ullrich. "Metabolic Dynamics in Short- and Long-Term Microgravity in Human Primary Macrophages." International Journal of Molecular Sciences 22, no. 13 (2021): 6752. http://dx.doi.org/10.3390/ijms22136752.
Texto completo da fonteZhao, Zanyan, Xiangpu Wang, Yu Ma, and Xiaohong Duan. "Atp6v1h Deficiency Blocks Bone Loss in Simulated Microgravity Mice through the Fos-Jun-Src-Integrin Pathway." International Journal of Molecular Sciences 25, no. 1 (2024): 637. http://dx.doi.org/10.3390/ijms25010637.
Texto completo da fonteJohnson, Ian R. D., Catherine T. Nguyen, Petra Wise, and Daniela Grimm. "Implications of Altered Endosome and Lysosome Biology in Space Environments." International Journal of Molecular Sciences 21, no. 21 (2020): 8205. http://dx.doi.org/10.3390/ijms21218205.
Texto completo da fonteCalcagno, Gaetano, Jeremy Jeandel, Jean-Pol Frippiat та Sandra Kaminski. "Simulated Microgravity Disrupts Nuclear Factor κB Signaling and Impairs Murine Dendritic Cell Phenotype and Function". International Journal of Molecular Sciences 24, № 2 (2023): 1720. http://dx.doi.org/10.3390/ijms24021720.
Texto completo da fontePYLYPENKO, O. V., D. E. SMOLENSKYY, O. D. NIKOLAYEV, and I. D. BASHLIY. "The approach to numerical simulation of the spatial movement of fluid with forming free gas inclusions in propellant tank at space flight conditions." Kosmìčna nauka ì tehnologìâ 28, no. 5 (2022): 03–14. http://dx.doi.org/10.15407/knit2022.05.003.
Texto completo da fonteHerrera-Jordan, Katherinne, Pamela Pennington, and Luis Zea. "Reduced Pseudomonas aeruginosa Cell Size Observed on Planktonic Cultures Grown in the International Space Station." Microorganisms 12, no. 2 (2024): 393. http://dx.doi.org/10.3390/microorganisms12020393.
Texto completo da fonteUllrich, Oliver, Christian Paul Casal, Natalie Dové, et al. "Swiss Parabolic Flights: Development of a Non-Governmental Parabolic Flight Program in Switzerland Based on the Airbus A310 ZERO-G." Aerospace 10, no. 10 (2023): 860. http://dx.doi.org/10.3390/aerospace10100860.
Texto completo da fonteManis, Cristina, Alessia Manca, Antonio Murgia, et al. "Understanding the Behaviour of Human Cell Types under Simulated Microgravity Conditions: The Case of Erythrocytes." International Journal of Molecular Sciences 23, no. 12 (2022): 6876. http://dx.doi.org/10.3390/ijms23126876.
Texto completo da fonteSokolovskaya, Alisa, Ekaterina Korneeva, Danila Zaichenko, et al. "Changes in the Surface Expression of Intercellular Adhesion Molecule 3, the Induction of Apoptosis, and the Inhibition of Cell-Cycle Progression of Human Multidrug-Resistant Jurkat/A4 Cells Exposed to a Random Positioning Machine." International Journal of Molecular Sciences 21, no. 3 (2020): 855. http://dx.doi.org/10.3390/ijms21030855.
Texto completo da fonteKrakos (Podwin), Agnieszka, Patrycja Śniadek, Marta Jurga, et al. "Lab-on-Chip Culturing System for Fungi—Towards Nanosatellite Missions." Applied Sciences 12, no. 20 (2022): 10627. http://dx.doi.org/10.3390/app122010627.
Texto completo da fonteMoreno-Villanueva, Maria, Alan Feiveson, Stephanie Krieger, et al. "Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells." International Journal of Molecular Sciences 19, no. 11 (2018): 3689. http://dx.doi.org/10.3390/ijms19113689.
Texto completo da fonteSun, Yulong, Yuanyuan Kuang, and Zhuo Zuo. "The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions." International Journal of Molecular Sciences 22, no. 5 (2021): 2333. http://dx.doi.org/10.3390/ijms22052333.
Texto completo da fonteGrimm, Daniela. "Microgravity and Space Medicine 2.0." International Journal of Molecular Sciences 23, no. 8 (2022): 4456. http://dx.doi.org/10.3390/ijms23084456.
Texto completo da fontePrasad, Binod, Daniela Grimm, Sebastian M. Strauch, et al. "Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro." International Journal of Molecular Sciences 21, no. 24 (2020): 9373. http://dx.doi.org/10.3390/ijms21249373.
Texto completo da fonteElGindi, Mei, Ibrahim Hamed Ibrahim, Jiranuwat Sapudom, Anna Garcia-Sabate, and Jeremy C. M. Teo. "Engineered Microvessel for Cell Culture in Simulated Microgravity." International Journal of Molecular Sciences 22, no. 12 (2021): 6331. http://dx.doi.org/10.3390/ijms22126331.
Texto completo da fonteFedeli, Valeria, Alessandra Cucina, Simona Dinicola, et al. "Microgravity Modifies the Phenotype of Fibroblast and Promotes Remodeling of the Fibroblast–Keratinocyte Interaction in a 3D Co-Culture Model." International Journal of Molecular Sciences 23, no. 4 (2022): 2163. http://dx.doi.org/10.3390/ijms23042163.
Texto completo da fonteMarkina, Elena, Ekaterina Tyrina, Andrey Ratushnyy, Elena Andreeva, and Ludmila Buravkova. "Heterotypic Cell Culture from Mouse Bone Marrow under Simulated Microgravity: Lessons for Stromal Lineage Functions." International Journal of Molecular Sciences 24, no. 18 (2023): 13746. http://dx.doi.org/10.3390/ijms241813746.
Texto completo da fonteKim, Ban-seok, Alfredo V. Alcantara, Je-Hyun Moon, et al. "Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode Caenorhabditis elegans." International Journal of Molecular Sciences 24, no. 16 (2023): 12640. http://dx.doi.org/10.3390/ijms241612640.
Texto completo da fonteDegan, Paolo, Katia Cortese, Alessandra Pulliero, et al. "Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters." International Journal of Molecular Sciences 22, no. 13 (2021): 6951. http://dx.doi.org/10.3390/ijms22136951.
Texto completo da fonteMezzina, Lidia, Angelo Nicosia, Fabiana Vento, Guido De Guidi, and Placido Giuseppe Mineo. "Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities." Nanomaterials 12, no. 6 (2022): 996. http://dx.doi.org/10.3390/nano12060996.
Texto completo da fonteThiel, Cora Sandra, Svantje Tauber, Beatrice Lauber, et al. "Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages." International Journal of Molecular Sciences 20, no. 10 (2019): 2402. http://dx.doi.org/10.3390/ijms20102402.
Texto completo da fonte