Artigos de revistas sobre o tema "MiR-183-5p"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "MiR-183-5p".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yan, Rong, Kang Li, Dawei Yuan, Haonan Wang, Wei Chen, Kun Zhu e Chengxue Dang. "miR-183-5p promotes proliferation and migration in hepatocellular carcinoma by targeting IRS1 and its association with patient survival". International Journal of Biological Markers 35, n.º 3 (setembro de 2020): 83–89. http://dx.doi.org/10.1177/1724600820951572.
Texto completo da fonteWu, Chihua, Youlin Tuo, Gang Hu e Jing Luo. "miR-183-5p Aggravates Breast Cancer Development via Mediation of RGS2". Computational and Mathematical Methods in Medicine 2021 (20 de novembro de 2021): 1–9. http://dx.doi.org/10.1155/2021/9664195.
Texto completo da fonteLi, Peiyi, Caifeng Gao e Zhiyun Chen. "Effect of Bone Marrow Mesenchymal Stem Cells (BMSCs) with High miR-183-5p Expression on Ovarian Cancer Cells by Regulating Signal Transducer and Activator of Transcription 3 (STAT3)". Journal of Biomaterials and Tissue Engineering 12, n.º 9 (1 de setembro de 2022): 1692–98. http://dx.doi.org/10.1166/jbt.2022.3093.
Texto completo da fonteAkbar, Rubab, Kamran Ullah, Tanzil Ur Rahman, Yi Cheng, Hai-Yan Pang, Lu-Yang Jin, Qi-Jing Wang, He-Feng Huang e Jian-Zhong Sheng. "miR-183-5p regulates uterine receptivity and enhances embryo implantation". Journal of Molecular Endocrinology 64, n.º 1 (janeiro de 2020): 43–52. http://dx.doi.org/10.1530/jme-19-0184.
Texto completo da fonteHua, Mingqiang, Qi Feng, Ju Li, Yu Hou, Shuwen Wang, Anli Liu, Jun Peng e Ming Hou. "Aberrant Expression of MicroRNAs in CD4+ Cells May Contribute to the Imbalance of Th17/Treg Cells in Primary Immune Thrombocytopenia". Blood 132, Supplement 1 (29 de novembro de 2018): 1140. http://dx.doi.org/10.1182/blood-2018-99-115569.
Texto completo da fontePan, Weikang, Ali Wu, Hui Yu, Qiang Yu, Baijun Zheng, Weili Yang, Donghao Tian, Ya Gao e Peng Li. "NEAT1 Negatively Regulates Cell Proliferation and Migration of Neuroblastoma Cells by miR-183-5p/FOXP1 Via the ERK/AKT Pathway". Cell Transplantation 29 (1 de janeiro de 2020): 096368972094360. http://dx.doi.org/10.1177/0963689720943608.
Texto completo da fonteKaken, Habaxi, Shanshan Wang, Wei Zhao, Baoerjiang Asihaer e Li Wang. "P53 Regulates Osteogenic Differentiation Through miR-153-5p/miR-183-5p-X-Linked IAP (XIAP) Signal in Bone Marrow Mesenchymal Stem Cell (BMSC)". Journal of Biomaterials and Tissue Engineering 12, n.º 12 (1 de dezembro de 2022): 2427–31. http://dx.doi.org/10.1166/jbt.2022.3204.
Texto completo da fonteNguyen, Mai Thi, Kyung-Ho Min e Wan Lee. "MiR-183-5p Induced by Saturated Fatty Acids Hinders Insulin Signaling by Downregulating IRS-1 in Hepatocytes". International Journal of Molecular Sciences 23, n.º 6 (10 de março de 2022): 2979. http://dx.doi.org/10.3390/ijms23062979.
Texto completo da fonteLiu, Yanan, LiZhi Feng, Guo Hou e Lan Yao. "Curcumin Elevates microRNA-183-5p via Cathepsin B-Mediated Phosphatidylinositol 3-Kinase/AKT Pathway to Strengthen Lipopolysaccharide-Stimulated Immune Function of Sepsis Mice". Contrast Media & Molecular Imaging 2022 (30 de julho de 2022): 1–10. http://dx.doi.org/10.1155/2022/6217234.
Texto completo da fonteHsu, Yung-Ray, Shu-Wen Chang, Yu-Cheng Lin e Chang-Hao Yang. "Expression of MicroRNAs in the Eyes of Lewis Rats with Experimental Autoimmune Anterior Uveitis". Mediators of Inflammation 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/457835.
Texto completo da fonteGeng, N., D. Yun, D. Liu e P. Liu. "AB0053 LncRNA NUTM2A-AS1 ALLEVIATED OSTEOARTHRITIS BY REGULATING miR-183-5p/TGFA PATHWAY". Annals of the Rheumatic Diseases 81, Suppl 1 (23 de maio de 2022): 1161.2–1161. http://dx.doi.org/10.1136/annrheumdis-2022-eular.4384.
Texto completo da fontePatterson, E., R. Webb, A. Weisbrod, B. Bian, M. He, L. Zhang, A. K. Holloway et al. "The microRNA expression changes associated with malignancy and SDHB mutation in pheochromocytoma". Endocrine-Related Cancer 19, n.º 2 (12 de janeiro de 2012): 157–66. http://dx.doi.org/10.1530/erc-11-0308.
Texto completo da fonteYamano, Tomoki, Shuji Kubo, Emiko Sonoda, Tomoko Kominato, Kei Kimura, Michiko Yasuhara, Kozo Kataoka et al. "Assessment of circulating microRNA specific for patients with familial adenomatous polyposis". PLOS ONE 16, n.º 5 (4 de maio de 2021): e0250072. http://dx.doi.org/10.1371/journal.pone.0250072.
Texto completo da fonteQin, Shijie, Xuejia Shi, Canbiao Wang, Ping Jin e Fei Ma. "Transcription Factor and miRNA Interplays Can Manifest the Survival of ccRCC Patients". Cancers 11, n.º 11 (28 de outubro de 2019): 1668. http://dx.doi.org/10.3390/cancers11111668.
Texto completo da fonteZhou, Shaolan, Jing Zhang, Pengfei Luan, Zhanbing Ma, Jie Dang, Hong Zhu, Qian Ma, Yanfeng Wang e Zhenghao Huo. "miR-183-5p Is a Potential Molecular Marker of Systemic Lupus Erythematosus". Journal of Immunology Research 2021 (6 de maio de 2021): 1–11. http://dx.doi.org/10.1155/2021/5547635.
Texto completo da fonteZhang, Bao-Le, Fu-Lu Dong, Ting-Wen Guo, Xiao-He Gu, Lin-Yan Huang e Dian-Shuai Gao. "MiRNAs Mediate GDNF-Induced Proliferation and Migration of Glioma Cells". Cellular Physiology and Biochemistry 44, n.º 5 (2017): 1923–38. http://dx.doi.org/10.1159/000485883.
Texto completo da fontePetric, Rok, Barbara Gazic, Katja Goricar, Vita Dolzan, Radan Dzodic e Nikola Besic. "Expression of miRNA and Occurrence of Distant Metastases in Patients with Hürthle Cell Carcinoma". International Journal of Endocrinology 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/8945247.
Texto completo da fonteAmbrozkiewicz, Filip, Jakub Karczmarski, Maria Kulecka, Agnieszka Paziewska, Magdalena Cybulska, Michal Szymanski, Jakub Dobruch, Artur Antoniewicz, Michal Mikula e Jerzy Ostrowski. "Challenges in Cancer Biomarker Discovery Exemplified by the Identification of Diagnostic MicroRNAs in Prostate Tissues". BioMed Research International 2020 (6 de maio de 2020): 1–4. http://dx.doi.org/10.1155/2020/9086829.
Texto completo da fonteRoser, Anna-Elisa, Lucas Caldi Gomes, Rashi Halder, Gaurav Jain, Fabian Maass, Lars Tönges, Lars Tatenhorst, Mathias Bähr, André Fischer e Paul Lingor. "miR-182-5p and miR-183-5p Act as GDNF Mimics in Dopaminergic Midbrain Neurons". Molecular Therapy - Nucleic Acids 11 (junho de 2018): 9–22. http://dx.doi.org/10.1016/j.omtn.2018.01.005.
Texto completo da fonteEminaga, Okyaz, Fabian Woetzel, Jochen Fries, Susanne Neiss, Michaela Heitmann, Udo Engelmann, Axel Heidenreich e Ute Warnecke-Eberz. "miRNA expression profiles in high-grade prostatic intraepithelial neoplasia." Journal of Clinical Oncology 34, n.º 2_suppl (10 de janeiro de 2016): 45. http://dx.doi.org/10.1200/jco.2016.34.2_suppl.45.
Texto completo da fonteVisani, Michela, Gianluca Marucci, Dario de Biase, Felice Giangaspero, Francesca Romana Buttarelli, Alba Ariela Brandes, Enrico Franceschi et al. "miR-196B-5P and miR-200B-3P Are Differentially Expressed in Medulloblastomas of Adults and Children". Diagnostics 10, n.º 5 (29 de abril de 2020): 265. http://dx.doi.org/10.3390/diagnostics10050265.
Texto completo da fonteTomeva, Elena, Ulrike D. B. Krammer, Olivier J. Switzeny, Alexander G. Haslberger e Berit Hippe. "Sex-Specific miRNA Differences in Liquid Biopsies from Subjects with Solid Tumors and Healthy Controls". Epigenomes 7, n.º 1 (10 de janeiro de 2023): 2. http://dx.doi.org/10.3390/epigenomes7010002.
Texto completo da fonteLin, Min-Ying, Yu-Chan Chang, Shan-Ying Wang, Muh-Hwa Yang, Chih-Hsien Chang, Michael Hsiao, Richard N. Kitsis e Yi-Jang Lee. "OncomiR miR-182-5p Enhances Radiosensitivity by Inhibiting the Radiation-Induced Antioxidant Effect through SESN2 in Head and Neck Cancer". Antioxidants 10, n.º 11 (14 de novembro de 2021): 1808. http://dx.doi.org/10.3390/antiox10111808.
Texto completo da fonteShang, Jin, Wei-Min Chen, Zhi-Hong Wang, Tian-Nan Wei, Zhi-Zhong Chen e Wen-Bing Wu. "CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p–XIAP axis". Experimental Hematology 70 (fevereiro de 2019): 42–54. http://dx.doi.org/10.1016/j.exphem.2018.10.011.
Texto completo da fonteDettmer, Matthias S., Aurel Perren, Holger Moch, Paul Komminoth, Yuri E. Nikiforov e Marina N. Nikiforova. "MicroRNA profile of poorly differentiated thyroid carcinomas: new diagnostic and prognostic insights". Journal of Molecular Endocrinology 52, n.º 2 (17 de janeiro de 2014): 181–89. http://dx.doi.org/10.1530/jme-13-0266.
Texto completo da fonteCao, Jia-Min, Shi-Ying Hou, Xin Qi e Wei Xiong. "Epigenetics effect on pathogenesis of thyroid-associated ophthalmopathy". International Journal of Ophthalmology 14, n.º 9 (18 de setembro de 2021): 1441–48. http://dx.doi.org/10.18240/ijo.2021.09.22.
Texto completo da fonteSouza, Marilesia Ferreira, Ilce Mara Syllos Cólus, Aline Simoneti Fonseca, Valquíria Casanova Antunes, Deepak Kumar e Luciane Regina Cavalli. "MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways". Biomolecules 12, n.º 2 (22 de janeiro de 2022): 187. http://dx.doi.org/10.3390/biom12020187.
Texto completo da fonteOliveira-Rizzo, Carolina, María Carolina Ottati, Rafael Sebastián Fort, Santiago Chavez, Juan Manuel Trinidad, Andrés DiPaolo, Beatriz Garat, José Roberto Sotelo-Silveira e María Ana Duhagon. "Hsa-miR-183-5p Modulates Cell Adhesion by Repression of ITGB1 Expression in Prostate Cancer". Non-Coding RNA 8, n.º 1 (18 de janeiro de 2022): 11. http://dx.doi.org/10.3390/ncrna8010011.
Texto completo da fonteNiu, Yaqian, Fang Liu, Xiuyue Wang, Yuling Chang, Yanmei Song, Huiyuan Chu, Shisan Bao e Che Chen. "miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis". OncoTargets and Therapy Volume 14 (junho de 2021): 3649–58. http://dx.doi.org/10.2147/ott.s304117.
Texto completo da fonteRong, Hui, Hanwei Jiao, Yongchang Hao, Feng Pang, Guohua Li, Dongmei Peng, Yaying Li et al. "CD14 gene silencing alters the microRNA expression profile of RAW264.7 cells stimulated by Brucella melitensis infection". Innate Immunity 23, n.º 5 (26 de abril de 2017): 424–31. http://dx.doi.org/10.1177/1753425917707025.
Texto completo da fonteSedgeman, Leslie R., Carine Beysen, Ryan M. Allen, Marisol A. Ramirez Solano, Scott M. Turner e Kasey C. Vickers. "Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes". American Journal of Physiology-Gastrointestinal and Liver Physiology 315, n.º 5 (1 de novembro de 2018): G810—G823. http://dx.doi.org/10.1152/ajpgi.00238.2018.
Texto completo da fonteZhang, Tianxiang, Wei Li, Meng Gu, Ziyu Wang, Shijie Zhou, Xuefeng Hao, Weiying Li e Shaofa Xu. "Clinical Significance of miR-183-3p and miR-182-5p in NSCLC and Their Correlation". Cancer Management and Research Volume 13 (abril de 2021): 3539–50. http://dx.doi.org/10.2147/cmar.s305179.
Texto completo da fonteZhang, Aisen, Cheng Wang, Hui Lu, Xi Chen, Yi Ba, Chunni Zhang e Chen-Yu Zhang. "Altered Serum MicroRNA Profile May Serve as an Auxiliary Tool for Discriminating Aggressive Thyroid Carcinoma from Nonaggressive Thyroid Cancer and Benign Thyroid Nodules". Disease Markers 2019 (16 de setembro de 2019): 1–11. http://dx.doi.org/10.1155/2019/3717683.
Texto completo da fonteHan, Hui, Shenkang Zhou, Gengzhen Chen, Yandi Lu e Hui Lin. "ABAT targeted by miR-183-5p regulates cell functions in liver cancer". International Journal of Biochemistry & Cell Biology 141 (dezembro de 2021): 106116. http://dx.doi.org/10.1016/j.biocel.2021.106116.
Texto completo da fonteBueno Marinas, Maria, Rudy Celeghin, Marco Cason, Riccardo Bariani, Anna Chiara Frigo, Joanna Jager, Petros Syrris et al. "A microRNA Expression Profile as Non-Invasive Biomarker in a Large Arrhythmogenic Cardiomyopathy Cohort". International Journal of Molecular Sciences 21, n.º 4 (24 de fevereiro de 2020): 1536. http://dx.doi.org/10.3390/ijms21041536.
Texto completo da fonteMeerson, Ari, Azwar Najjar, Elias Saad, Wisam Sbeit, Masad Barhoum e Nimer Assy. "Sex Differences in Plasma MicroRNA Biomarkers of Early and Complicated Diabetes Mellitus in Israeli Arab and Jewish Patients". Non-Coding RNA 5, n.º 2 (5 de abril de 2019): 32. http://dx.doi.org/10.3390/ncrna5020032.
Texto completo da fonteTiwari, Anshul, Brian D. Hobbs, Jiang Li, Alvin T. Kho, Samir Amr, Juan C. Celedón, Scott T. Weiss, Craig P. Hersh, Kelan G. Tantisira e Michael J. McGeachie. "Blood miRNAs Are Linked to Frequent Asthma Exacerbations in Childhood Asthma and Adult COPD". Non-Coding RNA 8, n.º 2 (3 de abril de 2022): 27. http://dx.doi.org/10.3390/ncrna8020027.
Texto completo da fonteYang, Qi, Bo Wei, Chuangang Peng, Le Wang e Chang Li. "Identification of serum exosomal miR-98–5p, miR-183–5p, miR-323–3p and miR-19b-3p as potential biomarkers for glioblastoma patients and investigation of their mechanisms". Current Research in Translational Medicine 70, n.º 1 (janeiro de 2022): 103315. http://dx.doi.org/10.1016/j.retram.2021.103315.
Texto completo da fonteSun, Guangli, Gang Su, Fang Liu e Wenjie Han. "NRAS Contributes to Retinoblastoma Progression Through SNHG16/miR-183-5p/NRAS Regulatory Network". OncoTargets and Therapy Volume 12 (dezembro de 2019): 10703–15. http://dx.doi.org/10.2147/ott.s232470.
Texto completo da fonteGuo, Ruowen, e Yide Qin. "LEMD1-AS1 Suppresses Ovarian Cancer Progression Through Regulating miR-183-5p/TP53 Axis". OncoTargets and Therapy Volume 13 (julho de 2020): 7387–98. http://dx.doi.org/10.2147/ott.s250850.
Texto completo da fonteShang, Anquan, Xuan Wang, Chenzheng Gu, Wenfang Liu, Junjun Sun, Bingjie Zeng, Chen Chen et al. "Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1". Aging 12, n.º 9 (3 de maio de 2020): 8352–71. http://dx.doi.org/10.18632/aging.103145.
Texto completo da fonteXu, Yuting, Chen Qiao, Siying He, Chen Lu, Shiqi Dong, Xiying Wu, Ming Yan e Fang Zheng. "Identification of Functional Genes in Pterygium Based on Bioinformatics Analysis". BioMed Research International 2020 (20 de novembro de 2020): 1–11. http://dx.doi.org/10.1155/2020/2383516.
Texto completo da fonteZhang, Jin, Renqing Nie, Mengxi Liu e Xiaoyi Zhang. "A Novel Strategy for Identifying NSCLC MicroRNA Biomarkers and Their Mechanism Analysis Based on a Brand-New CeRNA-Hub-FFL Network". International Journal of Molecular Sciences 23, n.º 19 (25 de setembro de 2022): 11303. http://dx.doi.org/10.3390/ijms231911303.
Texto completo da fontePirola, Carlos J., e Silvia Sookoian. "MicroRNAs as messengers of liver diseases: has the message finally been decrypted?" Clinical Science 136, n.º 5 (março de 2022): 323–28. http://dx.doi.org/10.1042/cs20211177.
Texto completo da fonteLi, Jia, Zhi-Qiang Hu, Song-Yang Yu, Li Mao, Zheng-Jun Zhou, Peng-Cheng Wang, Yu Gong et al. "CircRPN2 Inhibits Aerobic Glycolysis and Metastasis in Hepatocellular Carcinoma". Cancer Research 82, n.º 6 (15 de março de 2022): 1055–69. http://dx.doi.org/10.1158/0008-5472.can-21-1259.
Texto completo da fonteEminaga, Okyaz, Jochen Fries, Fabian Woetzel, Susanne Neiss, Ute Warnecke-Eberz, Michaela Heitmann e Axel Heidenreich. "The expression profiles of miRNAs in the progression of prostate cancer from high-grade prostatic intraepithelial neoplasia to metastatic diseases." Journal of Clinical Oncology 34, n.º 2_suppl (10 de janeiro de 2016): 221. http://dx.doi.org/10.1200/jco.2016.34.2_suppl.221.
Texto completo da fonteJin, Lin, Yue Luo, Ying-Chun Zhao e Hai Tao. "MiR-183-5p Promotes Tumor Progression of Osteosarcoma and Predicts Poor Prognosis in Patients". Cancer Management and Research Volume 13 (janeiro de 2021): 805–14. http://dx.doi.org/10.2147/cmar.s285909.
Texto completo da fonteZhou, Shaolan, Jing Zhang, Pengfei Luan, Zhanbing Ma, Jie Dang, Hong Zhu, Qian Ma, Yanfeng Wang e Zhenghao Huo. "Corrigendum to “miR-183-5p Is a Potential Molecular Marker of Systemic Lupus Erythematosus”". Journal of Immunology Research 2021 (4 de setembro de 2021): 1–2. http://dx.doi.org/10.1155/2021/9818203.
Texto completo da fonteZheng, Zhuojun, Xiao Zheng, Yuandong Zhu, Xiaoyan Gu, Weiying Gu, Xiaobao Xie, Wenwei Hu e Jingting Jiang. "miR-183-5p Inhibits Occurrence and Progression of Acute Myeloid Leukemia via Targeting Erbin". Molecular Therapy 27, n.º 3 (março de 2019): 542–58. http://dx.doi.org/10.1016/j.ymthe.2019.01.016.
Texto completo da fonteMeng, Fanlu, e Linlin Zhang. "miR-183-5p functions as a tumor suppressor in lung cancer through PIK3CA inhibition". Experimental Cell Research 374, n.º 2 (janeiro de 2019): 315–22. http://dx.doi.org/10.1016/j.yexcr.2018.12.003.
Texto completo da fonte