Literatura científica selecionada sobre o tema "MMWAVE PROPAGATION"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "MMWAVE PROPAGATION".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "MMWAVE PROPAGATION"
Al-Saman, Ahmed, Michael Cheffena, Olakunle Elijah, Yousef A. Al-Gumaei, Sharul Kamal Abdul Rahim e Tawfik Al-Hadhrami. "Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments". Electronics 10, n.º 14 (11 de julho de 2021): 1653. http://dx.doi.org/10.3390/electronics10141653.
Texto completo da fonteLiu, Baobao, Pan Tang, Jianhua Zhang, Yue Yin, Guangyi Liu e Liang Xia. "Propagation Characteristics Comparisons between mmWave and Visible Light Bands in the Conference Scenario". Photonics 9, n.º 4 (1 de abril de 2022): 228. http://dx.doi.org/10.3390/photonics9040228.
Texto completo da fonteRodríguez-Corbo, Fidel, Leyre Azpilicueta, Mikel Celaya-Echarri, Peio López-Iturri, Imanol Picallo, Francisco Falcone e Ana Alejos. "Millimeter Wave Spatial Channel Characterization for Vehicular Communications". Proceedings 42, n.º 1 (14 de novembro de 2019): 64. http://dx.doi.org/10.3390/ecsa-6-06562.
Texto completo da fonteRodríguez-Corbo, Fidel Alejandro, Leyre Azpilicueta, Mikel Celaya-Echarri, Peio Lopez-Iturri, Ana V. Alejos e Francisco Falcone. "Deterministic Propagation Approach for Millimeter-Wave Outdoor Smart Parking Solution Deployment". Engineering Proceedings 2, n.º 1 (14 de novembro de 2020): 81. http://dx.doi.org/10.3390/ecsa-7-08231.
Texto completo da fonteGulfam, Sardar, Syed Nawaz, Konstantinos Baltzis, Abrar Ahmed e Noor Khan. "Characterization of Fading Statistics of mmWave (28 GHz and 38 GHz) Outdoor and Indoor Radio Propagation Channels". Technologies 7, n.º 1 (9 de janeiro de 2019): 9. http://dx.doi.org/10.3390/technologies7010009.
Texto completo da fonteRahayu, Ismalia, e Ahmad Firdausi. "5G Channel Model for Frequencies 28 GHz, 73 GHz and 4 GHz with Influence of Temperature in Bandung". Jurnal Teknologi Elektro 13, n.º 2 (31 de maio de 2022): 94. http://dx.doi.org/10.22441/jte.2022.v13i2.006.
Texto completo da fonteDos Anjos, Andre Antonio, Tiago Reis Rufino Marins, Carlos Rafael Nogueira Da Silva, Vicent Miquel Rodrigo Penarrocha, Lorenzo Rubio, Juan Reig, Rausley Adriano Amaral De Souza e Michel Daoud Yacoub. "Higher Order Statistics in a mmWave Propagation Environment". IEEE Access 7 (2019): 103876–92. http://dx.doi.org/10.1109/access.2019.2930931.
Texto completo da fonteYao, H., X. Wang, H. Qi e X. Liang. "TIGHTLY COUPLED INDOOR POSITIONING USING UWB/MMWAVE RADAR/IMU". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-3/W1-2022 (5 de maio de 2022): 323–29. http://dx.doi.org/10.5194/isprs-archives-xlvi-3-w1-2022-323-2022.
Texto completo da fonteJiang, Ting, Maozhong Song, Xiaorong Zhu e Xu Liu. "Channel Estimation for Broadband Millimeter Wave MIMO Systems Based on High-Order PARALIND Model". Wireless Communications and Mobile Computing 2021 (23 de novembro de 2021): 1–12. http://dx.doi.org/10.1155/2021/6408442.
Texto completo da fonteIdan, Hayder R., Basim K. AL-Shammari e Hasan F. Khazal. "mmWave Compound Link Budget Model of Dust and Humidity Effect". Wasit Journal of Engineering Sciences 11, n.º 1 (1 de abril de 2023): 45–60. http://dx.doi.org/10.31185/ejuow.vol11.iss1.323.
Texto completo da fonteTeses / dissertações sobre o assunto "MMWAVE PROPAGATION"
Baldù, Giuseppe. "Characterization of millimeter wave propagation in indoor office environments". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25096/.
Texto completo da fonteOlbert, Jaroslav. "Modelování propagace signálu bezdrátových sítí LTE a WiFi uvnitř budov". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317037.
Texto completo da fonteZeman, Kryštof. "Modelování propagačního kanálu pro off-body komunikaci v oblasti milimetrových vln". Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403857.
Texto completo da fonteShareef, O. A., M. M. Abdulwahid, M. F. Mosleh e Raed A. Abd-Alhameed. "The Optimum Location for Access Point Deployment based on RSS for Indoor Communication". 2019. http://hdl.handle.net/10454/16995.
Texto completo da fonteIn indoor wireless communication networks, the optimal locations had been known to deploy the access points (AP's) which has a significant impact on improving various aspects of network operation, management, and coverage. In addition, develop the behavioral characteristics of the wireless network. The most used approach for localization purposes was based on Received Signal Strength (RSS) measurements, which is widely used in the wireless network. As well as, it can be easily accessed from different operating systems. In this paper, we proposed an optimal AP localization algorithm based on RSS measurement obtained from different received points. This localization algorithm works as a complementary to the 3D Ray tracing model based REMCOM wireless InSite software and considered two-step localization approach, data collection phase, and localization phase. Obtained result give relatively high accuracy to select the optimum location for AP compare with other selected locations. It is worth to mention that effect of different building materials on signal propagation has been considered with specifying the optimum location of deployment. Furthermore, channel characterizations that based on path losses have been considered as a confirmation for the optimum location being selected.
AGRAWAL, SACHIN KUMAR. "SOFTWARE DEFINED RADIO ATTENUATION CONTROL IN 5G COMMUNICATION SYSTEM". Thesis, 2019. http://dspace.dtu.ac.in:8080/jspui/handle/repository/17129.
Texto completo da fonteLivros sobre o assunto "MMWAVE PROPAGATION"
Rappaport, Theodore S., Kate A. Remley, Camillo Gentile, Andreas F. Molisch e Alenka Zajić, eds. Radio Propagation Measurements and Channel Modeling: Best Practices for Millimeter-Wave and Sub-Terahertz Frequencies. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781009122740.
Texto completo da fonteCapítulos de livros sobre o assunto "MMWAVE PROPAGATION"
Ponomarenko-Timofeev, Aleksei, Aleksandr Ometov e Olga Galinina. "Ray-Based Modeling of Unlicensed-Band mmWave Propagation Inside a City Bus". In Lecture Notes in Computer Science, 269–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30859-9_23.
Texto completo da fontePonomarenko-Timofeev, Aleksei, Vasilii Semkin, Pavel Masek e Olga Galinina. "Characterizing mmWave Radio Propagation at 60 GHz in a Conference Room Scenario". In Lecture Notes in Computer Science, 381–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01168-0_35.
Texto completo da fonteShamsan, Zaid Ahmed. "A Statistical Channel Propagation Analysis for 5G mmWave at 73 GHz in Urban Microcell". In Lecture Notes on Data Engineering and Communications Technologies, 748–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70713-2_68.
Texto completo da fonte"mmWave Propagation Modelling: Atmospheric Gaseous and Rain Losses". In 5G Physical Layer Technologies, 241–88. Chichester, UK: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119525547.ch6.
Texto completo da fonte"Millimeter-Wave (mmWave) Radio Propagation Characteristics ....... JOONGHEON KIM". In Opportunities in 5G Networks, 481–500. CRC Press, 2016. http://dx.doi.org/10.1201/b19698-26.
Texto completo da fonteAl-Kamali, Faisal, Mohamed Alouzi, Claude D’Amours e Francois Chan. "Architectures for Hybrid Precoding and Combining Techniques in Massive MIMO Systems Operating in the mmWave Band". In MIMO Communications - Fundamental Theory, Propagation Channels, and Antenna Systems [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112113.
Texto completo da fonte"mmWave Propagation Modelling - Weather, Vegetation, and Building Material Losses". In 5G Physical Layer Technologies, 289–345. Chichester, UK: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119525547.ch7.
Texto completo da fonteG., Senbagavalli, T. Kavitha, Aruna Ramalingam e Velvizhi V. A. "6G With TeraHertz Communications". In Advances in Wireless Technologies and Telecommunication, 218–47. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9636-4.ch011.
Texto completo da fonteKourogiorgas, Charilaos, Nektarios Moraitis e Athanasios D. Panagopoulos. "Radio Channel Modeling and Propagation Prediction for 5G Mobile Communication Systems". In Advances in Wireless Technologies and Telecommunication, 1–30. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8732-5.ch001.
Texto completo da fonteVuckovic, Katarina, e Nazanin Rahanvard. "Localization Techniques in Multiple-Input Multiple-Output Communication: Fundamental Principles, Challenges, and Opportunities". In MIMO Communications - Fundamental Theory, Propagation Channels, and Antenna Systems [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112037.
Texto completo da fonteTrabalhos de conferências sobre o assunto "MMWAVE PROPAGATION"
Zeman, Krystof, Martin Stusek, Pavel Masek, Jiri Hosek e Jindriska Sedova. "Enhanced 3D Propagation Loss Model for mmWave Communications". In 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2018. http://dx.doi.org/10.1109/icumt.2018.8631276.
Texto completo da fonteAntonescu, Bogdan, Miead Tehrani Moayyed e Stefano Basagni. "Outdoor mmWave Channel Propagation Models using Clustering Algorithms". In 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020. http://dx.doi.org/10.1109/icnc47757.2020.9049734.
Texto completo da fonteAntonescu, Bogdan, Miead Tehrani Moayyed e Stefano Basagni. "mmWave channel propagation modeling for V2X communication systems". In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2017. http://dx.doi.org/10.1109/pimrc.2017.8292718.
Texto completo da fontePrasad, S., M. Meenakshi e P. H. Rao. "Hardware Impairments in mmWave Phased Arrays". In 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON). IEEE, 2022. http://dx.doi.org/10.1109/mapcon56011.2022.10047354.
Texto completo da fonteFoegelle, M. D. "5G and mmWave Device Measurement Challenges". In 12th European Conference on Antennas and Propagation (EuCAP 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.0742.
Texto completo da fonteKoslowski, Konstantin, Felix Baum, Luca Buhler, Michael Peter e Wilhelm Keusgen. "Enhancing mmWave Devices with Custom Lenses". In 2022 16th European Conference on Antennas and Propagation (EuCAP). IEEE, 2022. http://dx.doi.org/10.23919/eucap53622.2022.9769338.
Texto completo da fonteTishchenko, Anton, Ali Ali, Paul Botham, Fraser Burton, Mohsen Khalily e Rahim Tafazolli. "Reflective Metasurface for 5G mmWave Coverage Enhancement". In 2022 International Symposium on Antennas and Propagation (ISAP). IEEE, 2022. http://dx.doi.org/10.1109/isap53582.2022.9998700.
Texto completo da fonteAzpilicueta, L., F. A. Rodriguez-Corbo, M. Celaya-Echarri, P. Lopez-Iturri, David G. Michelson e F. Falcone. "Deterministic-Based 5G mmWave Propagation Characterization in Urban Environments". In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704243.
Texto completo da fonteHoellinger, Joseph, Gloria Makhoul, Raffaele D'Errico e Thierry Marsault. "V2V Dynamic Channel Characterization in 5G mmWave Band". In 2022 International Symposium on Antennas and Propagation (ISAP). IEEE, 2022. http://dx.doi.org/10.1109/isap53582.2022.9998590.
Texto completo da fonteKarthikeya, G. S., e H. S. Suraj. "mmWave metamaterial inspired coaxial-fed microstrip antenna array for Femtosat". In 2016 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2016. http://dx.doi.org/10.1109/lapc.2016.7807518.
Texto completo da fonte