Literatura científica selecionada sobre o tema "Muscle-brain axis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Muscle-brain axis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Muscle-brain axis"
Sikiric, Predrag, Slaven Gojkovic, Ivan Krezic, Ivan Maria Smoday, Luka Kalogjera, Helena Zizek, Katarina Oroz et al. "Stable Gastric Pentadecapeptide BPC 157 May Recover Brain–Gut Axis and Gut–Brain Axis Function". Pharmaceuticals 16, n.º 5 (30 de abril de 2023): 676. http://dx.doi.org/10.3390/ph16050676.
Texto completo da fonteSanjay Kalra, Saurabh Arora e Nitin Kapoor. "The Mood-Muscle Meta Bridge (Brain Muscle Axis)". Journal of the Pakistan Medical Association 74, n.º 4 (11 de fevereiro de 2024): 589–90. http://dx.doi.org/10.47391/jpma.24-16.
Texto completo da fonteBurtscher, Johannes, Grégoire P. Millet, Nicolas Place, Bengt Kayser e Nadège Zanou. "The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection". International Journal of Molecular Sciences 22, n.º 12 (17 de junho de 2021): 6479. http://dx.doi.org/10.3390/ijms22126479.
Texto completo da fonteArosio, Beatrice, Riccardo Calvani, Evelyn Ferri, Hélio José Coelho-Junior, Angelica Carandina, Federica Campanelli, Veronica Ghiglieri, Emanuele Marzetti e Anna Picca. "Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle–Brain Axis". Nutrients 15, n.º 8 (12 de abril de 2023): 1853. http://dx.doi.org/10.3390/nu15081853.
Texto completo da fontePrzewłócka, Katarzyna, Daria Korewo-Labelle, Paweł Berezka, Mateusz Jakub Karnia e Jan Jacek Kaczor. "Current Aspects of Selected Factors to Modulate Brain Health and Sports Performance in Athletes". Nutrients 16, n.º 12 (12 de junho de 2024): 1842. http://dx.doi.org/10.3390/nu16121842.
Texto completo da fonteSaponaro, Federica, Andrea Bertolini, Riccardo Baragatti, Leonardo Galfo, Grazia Chiellini, Alessandro Saba e Giuseppina D’Urso. "Myokines and Microbiota: New Perspectives in the Endocrine Muscle–Gut Axis". Nutrients 16, n.º 23 (25 de novembro de 2024): 4032. http://dx.doi.org/10.3390/nu16234032.
Texto completo da fonteLiu, Tingting, Haojie Wu, Jingwen Li, Chaoyang Zhu e Jianshe Wei. "Unraveling the Bone–Brain Axis: A New Frontier in Parkinson’s Disease Research". International Journal of Molecular Sciences 25, n.º 23 (29 de novembro de 2024): 12842. http://dx.doi.org/10.3390/ijms252312842.
Texto completo da fonteCutuli, Debora, Davide Decandia, Giacomo Giacovazzo e Roberto Coccurello. "Physical Exercise as Disease-Modifying Alternative against Alzheimer’s Disease: A Gut–Muscle–Brain Partnership". International Journal of Molecular Sciences 24, n.º 19 (28 de setembro de 2023): 14686. http://dx.doi.org/10.3390/ijms241914686.
Texto completo da fonteManti, Sara, Federica Xerra, Giulia Spoto, Ambra Butera, Eloisa Gitto, Gabriella Di Rosa e Antonio Gennaro Nicotera. "Neurotrophins: Expression of Brain–Lung Axis Development". International Journal of Molecular Sciences 24, n.º 8 (11 de abril de 2023): 7089. http://dx.doi.org/10.3390/ijms24087089.
Texto completo da fonteIgual Gil, Carla, Bethany M. Coull, Wenke Jonas, Rachel N. Lippert, Susanne Klaus e Mario Ost. "Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior". Life Science Alliance 5, n.º 11 (6 de setembro de 2022): e202201495. http://dx.doi.org/10.26508/lsa.202201495.
Texto completo da fonteTeses / dissertações sobre o assunto "Muscle-brain axis"
Cao, Jingxian. "Brain-Derived Neurotrophic Factor (BDNF) as a diagnostic and prognostic biomarker in anorexia nervosa". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5290.
Texto completo da fonteAnorexia nervosa (AN) is a multifaceted eating disorder marked by severe caloric restriction, extreme weight loss, and distorted body image. This thesis investigates the role of brain-derived neurotrophic factor (BDNF) in AN through the lens of neurobiological, metabolic, and psychological factors. Using a chronic animal model, the research examines how BDNF signaling intersects with reward and cognitive circuits, as well as its implications for the muscle-brain axis and the role of other neurotrophins in AN. Chapter 1 delves into the neurobiological and metabolic dimensions of AN. It focuses on how BDNF signaling dynamics are affected by chronic restriction, refeeding, and binge behaviors, specifically within brain structures associated with reward and cognitive circuits. Utilizing a chronic animal model, this chapter explores alterations in BDNF signaling across key brain regions, including the dorsal striatum (DS), prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA). It examines how these changes impact reward processing, cognitive functions, and overall metabolic homeostasis in the context of AN. The chapter also addresses the broader implications of these findings for understanding the neurobiological underpinnings of the disorder and its treatment. Chapter 2 investigates the dynamics of BDNF signaling and its relationship with genes implicated in the muscle-brain axis. This chapter examines how BDNF interacts with both rapid and slow muscle fibers and explores the connections between muscle and key brain regions, including the hippocampus and hypothalamus. The research highlights how these interactions influence neurobiological and metabolic processes in AN. By elucidating the role of BDNF in muscle-brain communication, this chapter contributes to a deeper understanding of the physiological mechanisms underlying AN and their potential implications for treatment strategies. Chapter 3 explores the role of other neurotrophins, specifically NTF3, NTF5, and NGF, in brain regions associated with AN. This chapter investigates how these neurotrophins are regulated and their impact on AN-related brain structures. By examining the expression and function of NTF3, NTF5, and NGF, the research provides insights into their contributions to the neurobiological processes underlying AN
Livros sobre o assunto "Muscle-brain axis"
Straub, Rainer H. Neuroendocrine system. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0022.
Texto completo da fonteStraub, Rainer H. Neuroendocrine system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_002.
Texto completo da fonteStraub, Rainer H. Neuroendocrine system. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_003.
Texto completo da fonteKleiner, Susan M., e Maggie Greenwood-Robinson. The New Power Eating. Human Kinetics, 2019. http://dx.doi.org/10.5040/9781718214101.
Texto completo da fonteCapítulos de livros sobre o assunto "Muscle-brain axis"
Daneshzand, Mohammad, Lucia I. Navarro de Lara, Qinglei Meng, Sergey Makarov, Işıl Uluç, Jyrki Ahveninen, Tommi Raij e Aapo Nummenmaa. "Experimental Verification of a Computational Real-Time Neuronavigation System for Multichannel Transcranial Magnetic Stimulation". In Brain and Human Body Modelling 2021, 61–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_4.
Texto completo da fonteSchlegel, Petr, Michal Novotny, Blanka Klimova e Martin Valis. "“Muscle-Gut-Brain Axis”: Can Physical Activity Help Patients with Alzheimer’s Disease Due to Microbiome Modulation?" In Advances in Alzheimer’s Disease. IOS Press, 2022. http://dx.doi.org/10.3233/aiad220006.
Texto completo da fonteStraub, Rainer H. "Neuroendocrine system and chronic autoimmune rheumatic diseases". In Oxford Textbook of Rheumatology, 162–71. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_004.
Texto completo da fonteA. Ochola, Lucy, e Eric M. Guantai. "Prevention of Hyperglycemia". In Metformin - Pharmacology and Drug Interactions. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99342.
Texto completo da fonteAtkinson, Martin E. "Introduction and surface anatomy". In Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0029.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Muscle-brain axis"
Pasha, Y., S. Taylor-Robinson, R. Leech, I. Ribeiro, N. Cook, M. Crossey e H. Marcinkowski. "PWE-091 L-ornithine L-aspartate in minimal hepatic encephalopathy: possible effects on the brain-muscle axis?" In British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.233.
Texto completo da fonteRelatórios de organizações sobre o assunto "Muscle-brain axis"
Funkenstein, Bruria, e Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, março de 2009. http://dx.doi.org/10.32747/2009.7696530.bard.
Texto completo da fonteFunkenstein, Bruria, e Cunming Duan. GH-IGF Axis in Sparus aurata: Possible Applications to Genetic Selection. United States Department of Agriculture, novembro de 2000. http://dx.doi.org/10.32747/2000.7580665.bard.
Texto completo da fonte