Artigos de revistas sobre o tema "Nested Association Mapping"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Nested Association Mapping".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Guo, Baohong, David A. Sleper, and William D. Beavis. "Nested Association Mapping for Identification of Functional Markers." Genetics 186, no. 1 (2010): 373–83. http://dx.doi.org/10.1534/genetics.110.115782.
Texto completo da fonteMcMullen, M. D., S. Kresovich, H. S. Villeda, et al. "Genetic Properties of the Maize Nested Association Mapping Population." Science 325, no. 5941 (2009): 737–40. http://dx.doi.org/10.1126/science.1174320.
Texto completo da fonteFragoso, Christopher A., Maria Moreno, Zuoheng Wang, et al. "Genetic Architecture of a Rice Nested Association Mapping Population." G3: Genes|Genomes|Genetics 7, no. 6 (2017): 1913–26. http://dx.doi.org/10.1534/g3.117.041608.
Texto completo da fonteNice, Liana M., Brian J. Steffenson, Thomas K. Blake, Richard D. Horsley, Kevin P. Smith, and Gary J. Muehlbauer. "Mapping Agronomic Traits in a Wild Barley Advanced Backcross-Nested Association Mapping Population." Crop Science 57, no. 3 (2017): 1199–210. http://dx.doi.org/10.2135/cropsci2016.10.0850.
Texto completo da fonteMcCauley, DJ. "A Nested Association Mapping Population for Wheat Stem Rust Resistance." CSA News 65, no. 8 (2020): 6–9. http://dx.doi.org/10.1002/csan.20240.
Texto completo da fonteGuo, Baohong, and William D. Beavis. "In silico genotyping of the maize nested association mapping population." Molecular Breeding 27, no. 1 (2010): 107–13. http://dx.doi.org/10.1007/s11032-010-9503-4.
Texto completo da fonteGrover, Sajjan, Braden Wojahn, Suresh Varsani, Scott E. Sattler, and Joe Louis. "Resistance to greenbugs in the sorghum nested association mapping population." Arthropod-Plant Interactions 13, no. 2 (2019): 261–69. http://dx.doi.org/10.1007/s11829-019-09679-y.
Texto completo da fonteBrock, Marcus T., Matthew J. Rubin, Dean DellaPenna, and Cynthia Weinig. "A Nested Association Mapping Panel in Arabidopsis thaliana for Mapping and Characterizing Genetic Architecture." G3: Genes|Genomes|Genetics 10, no. 10 (2020): 3701–8. http://dx.doi.org/10.1534/g3.120.401239.
Texto completo da fonteKitony, Justine K., Hidehiko Sunohara, Mikako Tasaki, et al. "Development of an Aus-Derived Nested Association Mapping (Aus-NAM) Population in Rice." Plants 10, no. 6 (2021): 1255. http://dx.doi.org/10.3390/plants10061255.
Texto completo da fonteBlake, N. K., M. Pumphrey, K. Glover, et al. "Registration of the Triticeae-CAP Spring Wheat Nested Association Mapping Population." Journal of Plant Registrations 13, no. 2 (2019): 294–97. http://dx.doi.org/10.3198/jpr2018.07.0052crmp.
Texto completo da fonteYu, Jianming, James B. Holland, Michael D. McMullen, and Edward S. Buckler. "Genetic Design and Statistical Power of Nested Association Mapping in Maize." Genetics 178, no. 1 (2008): 539–51. http://dx.doi.org/10.1534/genetics.107.074245.
Texto completo da fonteZahn, Sebastian, Thomas Schmutzer, Klaus Pillen, and Andreas Maurer. "Genomic Dissection of Peduncle Morphology in Barley through Nested Association Mapping." Plants 10, no. 1 (2020): 10. http://dx.doi.org/10.3390/plants10010010.
Texto completo da fonteBajgain, Prabin, Yue Jin, Toi J. Tsilo, et al. "Registration of KUWNSr, a wheat stem rust nested association mapping population." Journal of Plant Registrations 14, no. 3 (2020): 467–73. http://dx.doi.org/10.1002/plr2.20043.
Texto completo da fonteTian, Feng, Peter J. Bradbury, Patrick J. Brown, et al. "Genome-wide association study of leaf architecture in the maize nested association mapping population." Nature Genetics 43, no. 2 (2011): 159–62. http://dx.doi.org/10.1038/ng.746.
Texto completo da fonteOlatoye, Marcus O., Sandeep R. Marla, Zhenbin Hu, Sophie Bouchet, Ramasamy Perumal, and Geoffrey P. Morris. "Dissecting Adaptive Traits with Nested Association Mapping: Genetic Architecture of Inflorescence Morphology in Sorghum." G3: Genes|Genomes|Genetics 10, no. 5 (2020): 1785–96. http://dx.doi.org/10.1534/g3.119.400658.
Texto completo da fonteCook, Jason P., Michael D. McMullen, James B. Holland, et al. "Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association Panels." Plant Physiology 158, no. 2 (2011): 824–34. http://dx.doi.org/10.1104/pp.111.185033.
Texto completo da fonteZhang, Nengyi, Yves Gibon, Jason G. Wallace, et al. "Genome-Wide Association of Carbon and Nitrogen Metabolism in the Maize Nested Association Mapping Population." Plant Physiology 168, no. 2 (2015): 575–83. http://dx.doi.org/10.1104/pp.15.00025.
Texto completo da fonteBeche, Eduardo, Jason D. Gillman, Qijian Song, et al. "Nested association mapping of important agronomic traits in three interspecific soybean populations." Theoretical and Applied Genetics 133, no. 3 (2020): 1039–54. http://dx.doi.org/10.1007/s00122-019-03529-4.
Texto completo da fonteGuo, Zhigang, Dominic M. Tucker, Jianwei Lu, Venkata Kishore, and Gilles Gay. "Evaluation of genome-wide selection efficiency in maize nested association mapping populations." Theoretical and Applied Genetics 124, no. 2 (2011): 261–75. http://dx.doi.org/10.1007/s00122-011-1702-9.
Texto completo da fontePerumal, Ramasamy, Tesfaye T. Tesso, Geoffrey P. Morris, et al. "Registration of the sorghum nested association mapping (NAM) population in RTx430 background." Journal of Plant Registrations 15, no. 2 (2021): 395–402. http://dx.doi.org/10.1002/plr2.20110.
Texto completo da fonteKidane, Yosef G., Cherinet A. Gesesse, Bogale N. Hailemariam, et al. "A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat." Plant Biotechnology Journal 17, no. 7 (2019): 1380–93. http://dx.doi.org/10.1111/pbi.13062.
Texto completo da fonteGuo, Zhigang, Dominic M. Tucker, Daolong Wang, et al. "Accuracy of Across-Environment Genome-Wide Prediction in Maize Nested Association Mapping Populations." G3: Genes|Genomes|Genetics 3, no. 2 (2013): 263–72. http://dx.doi.org/10.1534/g3.112.005066.
Texto completo da fonteBajgain, Prabin, Matthew N. Rouse, Toi J. Tsilo, et al. "Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing." PLOS ONE 11, no. 5 (2016): e0155760. http://dx.doi.org/10.1371/journal.pone.0155760.
Texto completo da fonteChen, Qiuyue, Chin Jian Yang, Alessandra M. York, et al. "TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize." Genetics 213, no. 3 (2019): 1065–78. http://dx.doi.org/10.1534/genetics.119.302594.
Texto completo da fonteStich, Benjamin. "Comparison of Mating Designs for Establishing Nested Association Mapping Populations in Maize andArabidopsis thaliana." Genetics 183, no. 4 (2009): 1525–34. http://dx.doi.org/10.1534/genetics.109.108449.
Texto completo da fontePoland, J. A., P. J. Bradbury, E. S. Buckler, and R. J. Nelson. "Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize." Proceedings of the National Academy of Sciences 108, no. 17 (2011): 6893–98. http://dx.doi.org/10.1073/pnas.1010894108.
Texto completo da fonteGage, Joseph L., Brandon Monier, Anju Giri, and Edward S. Buckler. "Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions." Plant Cell 32, no. 7 (2020): 2083–93. http://dx.doi.org/10.1105/tpc.19.00951.
Texto completo da fonteMarla, Sandeep R., Gloria Burow, Ratan Chopra, et al. "Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population." G3: Genes|Genomes|Genetics 9, no. 12 (2019): 4045–57. http://dx.doi.org/10.1534/g3.119.400353.
Texto completo da fonteGireesh, Channappa, Raman M. Sundaram, Siddaiah M. Anantha, et al. "Nested Association Mapping (NAM) Populations: Present Status and Future Prospects in the Genomics Era." Critical Reviews in Plant Sciences 40, no. 1 (2021): 49–67. http://dx.doi.org/10.1080/07352689.2021.1880019.
Texto completo da fonteKump, Kristen L., Peter J. Bradbury, Randall J. Wisser, et al. "Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population." Nature Genetics 43, no. 2 (2011): 163–68. http://dx.doi.org/10.1038/ng.747.
Texto completo da fonteScott, Kelsey, Christine Balk, Deloris Veney, Leah K. McHale, and Anne E. Dorrance. "Quantitative Disease Resistance Loci towardsPhytophthora sojaeand Three Species ofPythiumin Six Soybean Nested Association Mapping Populations." Crop Science 59, no. 2 (2019): 605–23. http://dx.doi.org/10.2135/cropsci2018.09.0573.
Texto completo da fonteWang, Xiaoqian, Luhao Dong, Junmei Hu, et al. "Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping." Theoretical and Applied Genetics 132, no. 11 (2019): 3115–28. http://dx.doi.org/10.1007/s00122-019-03410-4.
Texto completo da fonteStich, Benjamin, H. Friedrich Utz, Hans-Peter Piepho, Hans P. Maurer, and Albrecht E. Melchinger. "Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize." Theoretical and Applied Genetics 120, no. 3 (2009): 553–61. http://dx.doi.org/10.1007/s00122-009-1175-2.
Texto completo da fonteBian, Yang, Qin Yang, Peter J. Balint-Kurti, Randall J. Wisser, and James B. Holland. "Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population." BMC Genomics 15, no. 1 (2014): 1068. http://dx.doi.org/10.1186/1471-2164-15-1068.
Texto completo da fonteBouchet, Sophie, Marcus O. Olatoye, Sandeep R. Marla, et al. "Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population." Genetics 206, no. 2 (2017): 573–85. http://dx.doi.org/10.1534/genetics.116.198499.
Texto completo da fonteSharma, Rajiv, Fulvia Draicchio, Hazel Bull, et al. "Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding." Journal of Experimental Botany 69, no. 16 (2018): 3811–22. http://dx.doi.org/10.1093/jxb/ery178.
Texto completo da fonteJordan, Katherine W., Shichen Wang, Fei He, et al. "The genetic architecture of genome‐wide recombination rate variation in allopolyploid wheat revealed by nested association mapping." Plant Journal 95, no. 6 (2018): 1039–54. http://dx.doi.org/10.1111/tpj.14009.
Texto completo da fonteAli, Muhammad Jaffer, Guangnan Xing, Jianbo He, Tuanjie Zhao, and Junyi Gai. "Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping population of soybean." Crop Journal 8, no. 5 (2020): 781–92. http://dx.doi.org/10.1016/j.cj.2020.06.008.
Texto completo da fonteNice, Liana M., Brian J. Steffenson, Gina L. Brown-Guedira, et al. "Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley." Genetics 203, no. 3 (2016): 1453–67. http://dx.doi.org/10.1534/genetics.116.190736.
Texto completo da fonteHung, H.-Y., C. Browne, K. Guill, et al. "The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population." Heredity 108, no. 5 (2011): 490–99. http://dx.doi.org/10.1038/hdy.2011.103.
Texto completo da fonteAndrade, Luciano Rogério Braatz de, Roberto Fritsche Neto, Ítalo Stefanine Correia Granato, Gustavo César Sant’Ana, Pedro Patric Pinho Morais, and Aluízio Borém. "Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents." PLOS ONE 11, no. 10 (2016): e0163739. http://dx.doi.org/10.1371/journal.pone.0163739.
Texto completo da fonteMaurer, Andreas, Vera Draba, and Klaus Pillen. "Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping." Journal of Experimental Botany 67, no. 8 (2016): 2507–18. http://dx.doi.org/10.1093/jxb/erw070.
Texto completo da fonteHerzig, Paul, Andreas Maurer, Vera Draba, et al. "Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping." Journal of Experimental Botany 69, no. 7 (2018): 1517–31. http://dx.doi.org/10.1093/jxb/ery002.
Texto completo da fonteGangurde, Sunil S., Hui Wang, Shasidhar Yaduru, et al. "Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut ( Arachis hypogaea )." Plant Biotechnology Journal 18, no. 6 (2019): 1457–71. http://dx.doi.org/10.1111/pbi.13311.
Texto completo da fonteVollrath, Paul, Harmeet S. Chawla, Sarah V. Schiessl, et al. "A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape." Theoretical and Applied Genetics 134, no. 4 (2021): 1217–31. http://dx.doi.org/10.1007/s00122-021-03768-4.
Texto completo da fonteHufford, Matthew B., Arun S. Seetharam, Margaret R. Woodhouse, et al. "De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes." Science 373, no. 6555 (2021): 655–62. http://dx.doi.org/10.1126/science.abg5289.
Texto completo da fonteChu, Y., C. C. Holbrook, T. G. Isleib, et al. "Phenotyping and genotyping parents of sixteen recombinant inbred peanut populations." Peanut Science 45, no. 1 (2018): 1–11. http://dx.doi.org/10.3146/ps17-17.1.
Texto completo da fonteVenkatesh, Tyamagondlu V., George G. Harrigan, Tim Perez, and Sherry Flint-Garcia. "Compositional Assessments of Key Maize Populations: B73 Hybrids of the Nested Association Mapping Founder Lines and Diverse Landrace Inbred Lines." Journal of Agricultural and Food Chemistry 63, no. 21 (2015): 5282–95. http://dx.doi.org/10.1021/acs.jafc.5b00208.
Texto completo da fonteLi, Shuguang, Yongce Cao, Jianbo He, Tuanjie Zhao, and Junyi Gai. "Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure." Theoretical and Applied Genetics 130, no. 11 (2017): 2297–314. http://dx.doi.org/10.1007/s00122-017-2960-y.
Texto completo da fonteChidzanga, Charity, Delphine Fleury, Ute Baumann, et al. "Development of an Australian Bread Wheat Nested Association Mapping Population, a New Genetic Diversity Resource for Breeding under Dry and Hot Climates." International Journal of Molecular Sciences 22, no. 9 (2021): 4348. http://dx.doi.org/10.3390/ijms22094348.
Texto completo da fonte