Literatura científica selecionada sobre o tema "Neural state-space models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Neural state-space models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Neural state-space models"
Korbicz, Józef, Marcin Mrugalski e Thomas Parisini. "DESIGNING STATE-SPACE MODELS WITH NEURAL NETWORKS". IFAC Proceedings Volumes 35, n.º 1 (2002): 459–64. http://dx.doi.org/10.3182/20020721-6-es-1901.01630.
Texto completo da fonteSchüssler, Max. "Machine learning with nonlinear state space models". at - Automatisierungstechnik 70, n.º 11 (27 de outubro de 2022): 1027–28. http://dx.doi.org/10.1515/auto-2022-0089.
Texto completo da fonteHe, Mingjian, Proloy Das, Gladia Hotan e Patrick L. Purdon. "Switching state-space modeling of neural signal dynamics". PLOS Computational Biology 19, n.º 8 (28 de agosto de 2023): e1011395. http://dx.doi.org/10.1371/journal.pcbi.1011395.
Texto completo da fonteForgione, Marco, e Dario Piga. "Neural State-Space Models: Empirical Evaluation of Uncertainty Quantification". IFAC-PapersOnLine 56, n.º 2 (2023): 4082–87. http://dx.doi.org/10.1016/j.ifacol.2023.10.1736.
Texto completo da fonteRaol, J. R. "Parameter estimation of state space models by recurrent neural networks". IEE Proceedings - Control Theory and Applications 142, n.º 2 (1 de março de 1995): 114–18. http://dx.doi.org/10.1049/ip-cta:19951733.
Texto completo da fonteBendtsen, J. D., e K. Trangbaek. "Robust quasi-LPV control based on neural state-space models". IEEE Transactions on Neural Networks 13, n.º 2 (março de 2002): 355–68. http://dx.doi.org/10.1109/72.991421.
Texto completo da fontePaninski, Liam, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein e Wei Wu. "A new look at state-space models for neural data". Journal of Computational Neuroscience 29, n.º 1-2 (1 de agosto de 2009): 107–26. http://dx.doi.org/10.1007/s10827-009-0179-x.
Texto completo da fonteGhahramani, Zoubin, e Geoffrey E. Hinton. "Variational Learning for Switching State-Space Models". Neural Computation 12, n.º 4 (1 de abril de 2000): 831–64. http://dx.doi.org/10.1162/089976600300015619.
Texto completo da fonteAghaee, Mohammad, Stephane Krau, Melih Tamer e Hector Budman. "Graph Neural Network Representation of State Space Models of Metabolic Pathways". IFAC-PapersOnLine 58, n.º 14 (2024): 464–69. http://dx.doi.org/10.1016/j.ifacol.2024.08.380.
Texto completo da fonteMangion, Andrew Zammit, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan e Guido Sanguinetti. "Online Variational Inference for State-Space Models with Point-Process Observations". Neural Computation 23, n.º 8 (agosto de 2011): 1967–99. http://dx.doi.org/10.1162/neco_a_00156.
Texto completo da fonteTeses / dissertações sobre o assunto "Neural state-space models"
Beck, Amanda M. "State space models for isolating neural oscillations". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120408.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-56).
Information communication in the brain depends on the spiking patterns of neurons. The interaction of these cells at the population level can be observed as oscillations of varying frequency and power, in local field potential recordings as well as non-invasive scalp electroencephalograms (EEG). These oscillations are thought to be responsible for coordinating activity across larger brain regions and conveying information across the brain, directing processes such as attention, consciousness, sensory and information processing. A common approach for analyzing these electrical potentials is to apply a band pass filter in the frequency band of interest. Canonical frequency bands have been defined and applied in many previous studies, but their specific definitions vary within the field, and are to some degree arbitrary. We propose an alternative approach that uses state space models to represent basic physiological and dynamic principles, whose detailed structure and parameterization are informed by observed data. We find that this method can more accurately represent oscillatory power, effectively separating it from background broadband noise power. This approach provides a way of separating oscillations in the time domain and while also quantifying their structure efficiently with a small number of parameters.
by Amanda M. Beck.
S.M. in Computer Science and Engineering
Hache, Alexandre. "Modélisation et commande de systèmes non-linéaires par apprentissage sous contraintes SDP de réseaux de neurones paramétrés". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2025. http://www.theses.fr/2025IMTA0458.
Texto completo da fonteThis thesis lies at the crossroad between learning theory and control theory, proposing a data-driven methodology for modeling and controlling nonlinear dynamical systems. Drawing from the absolute stability theory,and from a general representation of neural state-space models, several stability theorems are presented. Facing the limitations of traditional optimization approaches under LMI constraints for neural networks, we develop a complete theoretical framework for neural network parameterization, compatible with gradient algorithms and classical automatic differentiation tools. With the help of feedback linearization theory, a single-step learning method of an approximately linearizing controller and a reference model with guaranteed stability properties is presented. The theoretical results are validated on academic examples of disturbance attenuation, paving the way for more systematic use of neural networks in controllers’ design
Ogunc, Fethi. "Estimating The Neutral Real Interest Rate For Turkey By Using An Unobserved Components Model". Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607426/index.pdf.
Texto completo da fonteRodrigues, Júnior Selmo Eduardo. "Metodologia evolutiva para previsão inteligente de séries temporais sazonais baseada em espaço de estados não-observáveis". Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1723.
Texto completo da fonteMade available in DSpace on 2017-07-03T18:32:31Z (GMT). No. of bitstreams: 1 SelmoRodrigues.pdf: 1374245 bytes, checksum: 96afcfa04ba5cc18c4db55e4c92cdf23 (MD5) Previous issue date: 2017-01-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
This paper proposes a new methodology for modelling based on an evolving Neuro-Fuzzy Network Takagi-Sugeno (NFN-TS) for seasonal time series forecasting. The NFN-TS use the unobservable components extracted from the time series to evolve, i.e., to adapt and to adjust its structure, where the number of fuzzy rules of this network can increase or reduced according the components behavior. The method used to extract the components is a recursive version developed in this paper based on the Spectral Singular Analysis (SSA) technique. The proposed methodology has the principle divide to conquer, i.e., it divides a problem into easier subproblems, forecasting separately each component because they present dynamic behaviors that are simpler to forecast. The consequent propositions of fuzzy rules are linear state space models, where the states are the unobservable components data. When there are available observations from the time series, the training stage of NFN-TS is performed, i.e., the NFN-TS evolves its structure and adapts its parameters to carry out the mapping between the components data and the available sample of original time series. On the other hand, if this observation is not available, the network considers the forecasting stage, keeping its structure fixed and using the states of consequent fuzzy rules to feedback the components data to NFN-TS. The NFN-TS was evaluated and compared with other recent and traditional techniques for forecasting seasonal time series, obtaining competitive and advantageous results in relation to other papers. This paper also presents a case study of proposed methodology for real-time detection of anomalies based on a patient’s electrocardiogram data.
Esse trabalho propõe uma nova metodologia para modelagem baseada em uma Rede Neuro- Fuzzy Takagi-Sugeno (RNF-TS) evolutiva para a previsão de séries temporais sazonais. A RNF-TS considera as componentes não-observáveis extraídas a partir da série para evoluir, ou seja, adaptar e ajustar sua estrutura, sendo que a quantidade de regras fuzzy dessa rede pode aumentar ou ser reduzida conforme o comportamento das componentes. O método utilizado para extrair as componentes é uma versão recursiva desenvolvida nessa pesquisa baseada na técnica de Análise Espectral Singular (AES). A metodologia proposta tem como princípio dividir para conquistar, isto é, dividir um problema em subproblemas mais fáceis de lidar, realizando a previsão separadamente de cada componente já que apresentam comportamentos dinâmicos mais simples de prever. As proposições do consequente das regras fuzzy são modelos lineares no espaço de estados, sendo que os estados são os próprios dados das componentes não-observáveis. Quando há observações disponíveis da série temporal, o estágio de treinamento da RNF-TS é realizado, ou seja, a RNF-TS evolui sua estrutura e adapta seus parâmetros para realizar o mapeamento entre os dados das componentes e a amostra disponível da série temporal original. Caso contrário, se essa observação não está disponível, a rede aciona o estágio de previsão, mantendo sua estrutura fixa e usando os estados dos consequentes das regras fuzzy para realimentar os dados das componentes para a RNF-TS. A RNF-TS foi avaliada e comparada com outras técnicas recentes e tradicionais para previsão de séries temporais sazonais, obtendo resultados competitivos e vantajosos em relação a outras pesquisas. Este trabalho apresenta também um estudo de caso da metodologia proposta para detecção em tempo-real de anomalias baseada em dados de eletrocardiogramas de um paciente.
Vidne, Michael. "State-Space Models and Latent Processes in the Statistical Analysis of Neural Data". Thesis, 2011. https://doi.org/10.7916/D88058JW.
Texto completo da fonteDeng, Xinyi. "Point process modeling and estimation: advances in the analysis of dynamic neural spiking data". Thesis, 2016. https://hdl.handle.net/2144/17719.
Texto completo da fonteTao, Long. "Contributions to statistical analysis methods for neural spiking activity". Thesis, 2018. https://hdl.handle.net/2144/33172.
Texto completo da fonteBartoš, Samuel. "Predikce profilů spotřeby elektrické energie". Master's thesis, 2017. http://www.nusl.cz/ntk/nusl-365100.
Texto completo da fonteLivros sobre o assunto "Neural state-space models"
Vidne, Michael. State-Space Models and Latent Processes in the Statistical Analysis of Neural Data. [New York, N.Y.?]: [publisher not identified], 2011.
Encontre o texto completo da fonteChen, Zhe. Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, 2015.
Encontre o texto completo da fonteChen, Zhe. Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, 2015.
Encontre o texto completo da fonteChen, Zhe. Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, 2015.
Encontre o texto completo da fonteMARQUÉS, Felicidad. AUTOMATIC TIME SERIES FORECASTING Using NEURAL NETWORKS, STATE SPACE and ARIMAX MODELS. Examples with R. Independently Published, 2021.
Encontre o texto completo da fonteA Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding. Providence, USA: Brown University, 2019.
Encontre o texto completo da fonteAshby, F. Gregory, e Fabian A. Soto. Multidimensional Signal Detection Theory. Editado por Jerome R. Busemeyer, Zheng Wang, James T. Townsend e Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.2.
Texto completo da fonteButz, Martin V., e Esther F. Kutter. Top-Down Predictions Determine Perceptions. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0009.
Texto completo da fonteNolte, David D. Introduction to Modern Dynamics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844624.001.0001.
Texto completo da fonteMittelbach, Gary G., e Brian J. McGill. Community Ecology. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198835851.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "Neural state-space models"
Ławryńczuk, Maciej. "MPC Algorithms Based on Neural State-Space Models". In Studies in Systems, Decision and Control, 139–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04229-9_4.
Texto completo da fonteLiitiäinen, Elia, e Amaury Lendasse. "Long-Term Prediction of Time Series Using State-Space Models". In Artificial Neural Networks – ICANN 2006, 181–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11840930_19.
Texto completo da fonteWang, Fan, Keli Wang e Boyu Yao. "Time Series Anomaly Detection with Reconstruction-Based State-Space Models". In Artificial Neural Networks and Machine Learning – ICANN 2023, 74–86. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44213-1_7.
Texto completo da fonteEden, Uri T., Loren M. Frank e Long Tao. "Characterizing Complex, Multi-Scale Neural Phenomena Using State-Space Models". In Dynamic Neuroscience, 29–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71976-4_2.
Texto completo da fonteKung, S. Y., e J. N. Huang. "Systolic Designs for State Space Models: Kalman Filtering and Neural Networks". In Concurrent Computations, 619–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5511-3_31.
Texto completo da fonteŁawryńczuk, Maciej. "Computationally Efficient Nonlinear Predictive Control Based on State-Space Neural Models". In Parallel Processing and Applied Mathematics, 350–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14390-8_36.
Texto completo da fonteMphale, Ofaletse, e V. Lakshmi Narasimhan. "Comparative Forecasts of Confirmed COVID-19 Cases in Botswana Using Box-Jenkin's ARIMA and Exponential Smoothing State-Space Models". In Recurrent Neural Networks, 355–81. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003307822-23.
Texto completo da fonteRigatos, Gerasimos G. "Validation of Financial Options Models Using Neural Networks with Invariance to Fourier Transform". In State-Space Approaches for Modelling and Control in Financial Engineering, 167–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52866-3_9.
Texto completo da fonteChen, Zhe, e Emery N. Brown. "State-Space Models for the Analysis of Neural Spike Train and Behavioral Data". In Encyclopedia of Computational Neuroscience, 2864–67. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_410.
Texto completo da fonteChen, Zhe, e Emery N. Brown. "State-Space Models for the Analysis of Neural Spike Train and Behavioral Data". In Encyclopedia of Computational Neuroscience, 1–4. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_410-1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Neural state-space models"
Fan, Yiming, Peiyuan Zhou, David Forrester, Brian Ju e Fotis Kopsaftopoulos. "Evaluation of Local and Global Diagnostics for the Integration of Stochastic Time Series Models and Variational Autoencoders: Experimental Assessment on a Full Scale Helicopter Blade". In Vertical Flight Society 80th Annual Forum & Technology Display, 1–10. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1371.
Texto completo da fonteDeng, Weihao, Fei Han, Qinghua Ling, Qing Liu e Henry Han. "Causal fMRI-Mamba: Causal State Space Model for Neural Decoding and Brain Task States Recognition". In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10889151.
Texto completo da fonteZhu, YanZong, Yuesong Yang, Feng Li e Zhou Zhou. "Identification Modelling of the Hammerstein Nonlinear Systems Utilizing Adaptive Neural Fuzzy Networks and State Space Model". In 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), 1494–98. IEEE, 2024. http://dx.doi.org/10.1109/ddcls61622.2024.10606730.
Texto completo da fonteMurakami, Ryo, Satoshi Mori e Haichong K. Zhang. "Thermal Ablation Therapy Control with Tissue Necrosis-driven Temperature Feedback Enabled by Neural State Space Model with Extended Kalman Filter". In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2373–79. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801769.
Texto completo da fonteAghagolzadeh, Mehdi, e Wilson Truccolo. "Latent state-space models for neural decoding". In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944262.
Texto completo da fonteBeck, Amanda M., Emily P. Stephen e Patrick L. Purdon. "State Space Oscillator Models for Neural Data Analysis". In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513215.
Texto completo da fonteBendtsen, Jan. "A Right Coprime Factorization of Neural State Space Models". In Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007). IEEE, 2007. http://dx.doi.org/10.1109/isda.2007.111.
Texto completo da fonteBendtsen, Jan. "A Right Coprime Factorization of Neural State Space Models". In Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007). IEEE, 2007. http://dx.doi.org/10.1109/isda.2007.4389605.
Texto completo da fonteGrigorievskiy, Alexander, e Juha Karhunen. "Gaussian Process kernels for popular state-space time series models". In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727628.
Texto completo da fonteSong, Christian Y., Han-Lin Hsieh e Maryam M. Shanechi. "Decoder for Switching State-Space Models with Spike-Field Observations". In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716970.
Texto completo da fonteRelatórios de organizações sobre o assunto "Neural state-space models"
Pavlyuk, Іhor. Культурно-інформаційний простір України в роки німецько-фашистської окупації: за матеріалами україномовної колаборантської преси. Ivan Franko National University of Lviv, março de 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11719.
Texto completo da fonteBARKHATOV, NIKOLAY, e SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, dezembro de 2021. http://dx.doi.org/10.12731/er0519.07122021.
Texto completo da fonte