Siga este link para ver outros tipos de publicações sobre o tema: Neurosecretion.

Artigos de revistas sobre o tema "Neurosecretion"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Neurosecretion".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Grundschober, Christophe, Maria Luisa Malosio, Laura Astolfi, Tiziana Giordano, Patrick Nef, and Jacopo Meldolesi. "Neurosecretion Competence." Journal of Biological Chemistry 277, no. 39 (2002): 36715–24. http://dx.doi.org/10.1074/jbc.m203777200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Robinson, Linda J., and Thomas FJ Martin. "Docking and fusion in neurosecretion." Current Opinion in Cell Biology 10, no. 4 (1998): 483–92. http://dx.doi.org/10.1016/s0955-0674(98)80063-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Predel, R., and Manfred Eckert. "Neurosecretion: peptidergic systems in insects." Naturwissenschaften 87, no. 8 (2000): 343–50. http://dx.doi.org/10.1007/s001140050737.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Brosius, D. C., J. T. Hackett, and J. B. Tuttle. "Ca(2+)-independent and Ca(2+)-dependent stimulation of quantal neurosecretion in avian ciliary ganglion neurons." Journal of Neurophysiology 68, no. 4 (1992): 1229–34. http://dx.doi.org/10.1152/jn.1992.68.4.1229.

Texto completo da fonte
Resumo:
1. Although it is generally agreed that Ca2+ couples depolarization to the release of neurotransmitters, hypertonic saline and ethanol (ETOH) evoke neurosecretion independent of extracellular Ca2+. One possible explanation is that these agents release Ca2+ from an intracellular store that then stimulates Ca(2+)-dependent neurosecretion. An alternative explanation is that these agents act independently of Ca2+. 2. This work extends previous observations on the action of ETOH and hypertonic solutions (HOSM) on neurons to include effects on [Ca2+]i. We have looked for Ca(2+)-independent or -depen
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Galoyan, A. "Neurosecretory Hypothalamus-Endocrine Heart as a Functional System." Physiology 7, no. 6 (1992): 279–83. http://dx.doi.org/10.1152/physiologyonline.1992.7.6.279.

Texto completo da fonte
Resumo:
Cardiac atrial neurosecretion is precisely regulated by cardiotropic protein-hormonal complexes, formed by neurosecretory nuclei of the hypothalamus. There is a close neurohumoral interrelation between the neuroendocrine heart and the hypothalamus.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mishra, Nirmal Kumar. "Neurosecretion in reproductive behaviour of leeches." Journal of Biosciences 35, no. 3 (2010): 327–28. http://dx.doi.org/10.1007/s12038-010-0036-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dunlap, Karthleen, Jennifer I. Luebke, and Timothy J. Turner. "Identification of Calcium Channels That Control Neurosecretion." Science 266, no. 5186 (1994): 828–30. http://dx.doi.org/10.1126/science.266.5186.828.b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Westerink, R. H. S., and A. G. Ewing. "The PC12 cell as model for neurosecretion." Acta Physiologica 192, no. 2 (2007): 273–85. http://dx.doi.org/10.1111/j.1748-1716.2007.01805.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Dunlap, K., J. Luebke, and T. Turner. "Identification of calcium channels that control neurosecretion." Science 266, no. 5186 (1994): 828. http://dx.doi.org/10.1126/science.7973643.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Dunlap, K., J. I. Luebke, and T. J. Turner. "Identification of Calcium Channels That Control Neurosecretion." Science 266, no. 5186 (1994): 828–30. http://dx.doi.org/10.1126/science.266.5186.828-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Klimenkov, Igor V., Aleksey V. Kurylev, Nikolay S. Kositsyn, et al. "Dendritic Neurosecretion Phenomenon of Olfactory Receptor Cells." World Neurosurgery 83, no. 3 (2015): 278–79. http://dx.doi.org/10.1016/j.wneu.2015.01.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Cobb, J. L. S. "Neurohumors and neurosecretion in echinoderms: A review." Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 91, no. 1 (1988): 151–58. http://dx.doi.org/10.1016/0742-8413(88)90181-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Hays, R. M., N. Franki, H. Simon, and Y. Gao. "Antidiuretic hormone and exocytosis: lessons from neurosecretion." American Journal of Physiology-Cell Physiology 267, no. 6 (1994): C1507—C1524. http://dx.doi.org/10.1152/ajpcell.1994.267.6.c1507.

Texto completo da fonte
Resumo:
Many cells, both single and epithelial, are programmed for exocytosis. In most cases, the contents of cytoplasmic vesicles are delivered rapidly and directly to the extracellular fluid. The process has been intensively studied in the chromaffin cell and the nerve terminal, where, as in other cells, exocytosis is under a complex type of cytoskeletal control. An array of vesicle-associated proteins mediates attachment of the vesicles to the cytoskeleton, their release, and their fusion with the plasma membrane. Two functional pools of vesicles, the releasable and reserve pool, carry out immediat
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Grattan, David R., and Armen N. Akopian. "Oscillating from Neurosecretion to Multitasking Dopamine Neurons." Cell Reports 15, no. 4 (2016): 681–82. http://dx.doi.org/10.1016/j.celrep.2016.04.013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ramos-Miguel, Alfredo, J. Javier Meana, and Jesús A. García-Sevilla. "Cyclin-dependent kinase-5 and p35/p25 activators in schizophrenia and major depression prefrontal cortex: basal contents and effects of psychotropic medications." International Journal of Neuropsychopharmacology 16, no. 3 (2013): 683–89. http://dx.doi.org/10.1017/s1461145712000879.

Texto completo da fonte
Resumo:
AbstractCyclin-dependent kinase-5 (CDK5) and p35/p25 activators, interacting with the exocytotic machinery (e.g. munc18-1 and syntaxin-1A), play critical roles in neurosecretion. The basal status of CDK5/p35/p25 and the effect of psychotropic drugs (detected in blood/urine samples) were investigated in post-mortem prefrontal cortex (PFC)/Brodmann's area 9 of schizophrenia (SZ) and major depression (MD) subjects. In SZ (all subjects, n = 24), CDK5 and p35, but not p25, were reduced (−28 to −58%) compared to controls. In SZ antipsychotic-free (n = 12), activator p35 was decreased (−52%). In SZ a
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Parsons, T. D., A. L. Obaid, and B. M. Salzberg. "Aminoglycoside antibiotics block voltage-dependent calcium channels in intact vertebrate nerve terminals." Journal of General Physiology 99, no. 4 (1992): 491–504. http://dx.doi.org/10.1085/jgp.99.4.491.

Texto completo da fonte
Resumo:
Intrinsic and extrinsic optical signals recorded from the intact nerve terminals of vertebrate neurohypophyses were used to investigate the anatomical site and physiological mechanism of the antagonistic effects of aminoglycoside antibiotics on neurotransmission. Aminoglycoside antibiotics blocked the intrinsic light scattering signal closely associated with neurosecretion in the mouse neurohypophysis in a concentration-dependent manner with an IC50 of approximately 60 microM and the block was relieved by increasing [Ca2+]o. The rank order potency of different aminoglycoside antibiotics for bl
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Gil, Amparo, Virginia González-Vélez, Luis Miguel Gutiérrez, and José Villanueva. "The Role of Nicotinic Receptors on Ca2+ Signaling in Bovine Chromaffin Cells." Current Issues in Molecular Biology 46, no. 1 (2024): 808–20. http://dx.doi.org/10.3390/cimb46010052.

Texto completo da fonte
Resumo:
Chromaffin cells have been used as a physiological model to understand neurosecretion in mammals for many years. Nicotinic receptors located in the cells’ membrane are stimulated by acetylcholine, and they participate in the exocytosis of chromaffin granules, releasing catecholamines in response to stress. In this work, we discuss how the participation of nicotinic receptors and the localization of active zones in the borders of the cytoskeleton can generate local calcium signals leading to secretion. We use a computational model of a cytoskeleton cage to simulate Ca2+ levels in response to vo
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Orio, Patricio, Patricio Rojas, Gonzalo Ferreira та Ramón Latorre. "New Disguises for an Old Channel: MaxiK Channel β-Subunits". Physiology 17, № 4 (2002): 156–61. http://dx.doi.org/10.1152/nips.01387.2002.

Texto completo da fonte
Resumo:
Ca2+-activated K+ channels of large conductance (MaxiK or BK channels) control a large variety of physiological processes, including smooth muscle tone, neurosecretion, and hearing. Despite being coded by a single gene (Slowpoke), the diversity of MaxiK channels is great. Regulatory b-subunits, splicing, and metabolic regulation create this diversity fundamental to the adequate function of many tissues.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Scharrer, Berta. "Neurosecretion: Beginnings and New Directions in Neuropeptide Research." Annual Review of Neuroscience 10, no. 1 (1987): 1–18. http://dx.doi.org/10.1146/annurev.ne.10.030187.000245.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Thesleff, S., L. C. Sellin, and S. Tågerud. "Tetrahydroaminoacridine (tacrine) stimulates neurosecretion at mammalian motor endplates." British Journal of Pharmacology 100, no. 3 (1990): 487–90. http://dx.doi.org/10.1111/j.1476-5381.1990.tb15834.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Neher, Erwin. "Neurosecretion: what can we learn from chromaffin cells." Pflügers Archiv - European Journal of Physiology 470, no. 1 (2017): 7–11. http://dx.doi.org/10.1007/s00424-017-2051-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Han, Gayoung A., Nancy T. Malintan, Brett M. Collins, Frederic A. Meunier, and Shuzo Sugita. "Munc18-1 as a key regulator of neurosecretion." Journal of Neurochemistry 115, no. 1 (2010): 1–10. http://dx.doi.org/10.1111/j.1471-4159.2010.06900.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Martin, Thomas F. J. "The molecular machinery for fast and slow neurosecretion." Current Opinion in Neurobiology 4, no. 5 (1994): 626–32. http://dx.doi.org/10.1016/0959-4388(94)90002-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Chaudhuri Priyasankar. "Stress effects and neurosecretion in Earthworms: A Review." GSC Biological and Pharmaceutical Sciences 30, no. 1 (2025): 114–23. https://doi.org/10.30574/gscbps.2025.30.1.0006.

Texto completo da fonte
Resumo:
Earthworms, the poikilothermal first group of invertebrate, are subjected to stressful events, occasional (illumination), frequent (amputation due to predation) and seasonal (dehydration during summer), hydration (during monsoon), thermal (heat stress during summer, cold stress during winter) etc. These lowly evolved creatures often overcome the events of stress through eco-physiological adaptive changes in the central nervous system (CNS) neurosecretory system. In absence any endocrine gland and neurohaemal organ, their CNS is enriched with vascularisation and well defined neurosecretory cell
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Kwong, J., F. L. Roundabush, P. Hutton Moore, et al. "Hrs interacts with SNAP-25 and regulates Ca(2+)-dependent exocytosis." Journal of Cell Science 113, no. 12 (2000): 2273–84. http://dx.doi.org/10.1242/jcs.113.12.2273.

Texto completo da fonte
Resumo:
Synaptosome-associated protein of 25 kDa (SNAP-25) is a neuronal membrane protein essential for synaptic vesicle exocytosis. To investigate the mechanisms by which SNAP-25 mediates neurosecretion, we performed a search for proteins that interact with SNAP-25 using a yeast two-hybrid screen. Here, we report the isolation and characterization of a SNAP-25-interacting protein that is the rat homologue of mouse hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). Hrs specifically interacts with SNAP-25, but not SNAP-23/syndet. The association of Hrs and SNAP-25 is mediated via coile
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Sawin, Clark T. "Berta and Ernst Scharrer and the Concept of Neurosecretion." Endocrinologist 13, no. 2 (2003): 73–76. http://dx.doi.org/10.1097/01.ten.0000076205.95014.f9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Zeniou-Meyer, M., F. Gambino, Mohamed-Raafet Ammar, Y. Humeau, and N. Vitale. "The Coffin-Lowry Syndrome-Associated Protein rsk2 and Neurosecretion." Cellular and Molecular Neurobiology 30, no. 8 (2010): 1401–6. http://dx.doi.org/10.1007/s10571-010-9578-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Himmelreich, N. H., A. G. Storchak та N. G. Pozdniakova. "α-Latrotoxin-stimulated neurosecretion: The role of calcium ions". Neurophysiology 30, № 4-5 (1998): 199. http://dx.doi.org/10.1007/bf02462814.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Lando, L., and R. S. Zucker. "Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators." Journal of Neurophysiology 72, no. 2 (1994): 825–30. http://dx.doi.org/10.1152/jn.1994.72.2.825.

Texto completo da fonte
Resumo:
1. The photolabile Ca2+ chelator DM-nitrophen was injected into crayfish motor neuron terminals and photolyzed with light flashes of different intensity to determine the cooperativity of Ca2+ action in releasing neurotransmitter. 2. Each flash elicited a phasic postsynaptic response resembling an excitatory junctional potential, apparently due to a presynaptic ”spike” in intracellular calcium concentration ([Ca2+]i). 3. When postsynaptic currents were measured under voltage clamp, a Ca2+ cooperativity of approximately 3–4 was inferred from a supralinear dependence of responses on changes in pe
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

RASMUSSEN, D. D., J. H. LIU, W. H. SWARTZ, V. S. TUEROS, and S. S. C. YEN. "HUMAN FETAL HYPOTHALAMIC GnRH NEUROSECRETION: DOPAMINERGIC REGULATION IN VITRO." Clinical Endocrinology 25, no. 2 (1986): 127–32. http://dx.doi.org/10.1111/j.1365-2265.1986.tb01673.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kasatkina, Ludmila A., Vitaliy P. Gumenyuk, Eva M. Sturm, Akos Heinemann, Tytus Bernas, and Irene O. Trikash. "Modulation of neurosecretion and approaches for its multistep analysis." Biochimica et Biophysica Acta (BBA) - General Subjects 1862, no. 12 (2018): 2701–13. http://dx.doi.org/10.1016/j.bbagen.2018.08.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Klowden, Marc J. "Contributions of insect research toward our understanding of neurosecretion." Archives of Insect Biochemistry and Physiology 53, no. 3 (2003): 101–14. http://dx.doi.org/10.1002/arch.10093.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Fairweather, I., and D. W. Halton. "Neuropeptides in platyhelminths." Parasitology 102, S1 (1991): S77—S92. http://dx.doi.org/10.1017/s0031182000073315.

Texto completo da fonte
Resumo:
The neuropeptide story began in 1928 with the description by Ernst Scharrer of gland-like nerve cells in the hypothalamus of the minnow, Phoxinus laevis. Because these nerve cells were overwhelmingly specialized for secretory activity, overshadowing other neuronal properties, Scharrer termed them ‘neurosecretory neurons’. What was even more remarkable about the cells was that their products were released into the bloodstream to act as hormones, specifically neurohormones. Neurosecretory cells were identified largely on morphological grounds. That is, they could be stained with special techniqu
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lightman, S. L. "The neuroendocrine paraventricular hypothalamus: receptors, signal transduction, mRNA and neurosecretion." Journal of Experimental Biology 139, no. 1 (1988): 31–49. http://dx.doi.org/10.1242/jeb.139.1.31.

Texto completo da fonte
Resumo:
The hypothalamus is one of the most studied areas of the central nervous system. Many of its functions are understood and there is an extensive literature on its role in the control of pituitary hormone secretion, autonomic nervous system activity, regulation of salt, water and food ingestion, body temperature regulation and aspects of behaviour. Although the role of the hypothalamus in the control of pituitary secretion was postulated in the early 1900s, the chemical nature of these control mechanisms has only been documented in the last few years. The opioid peptides represent one particular
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Oka, Kazuyuki, and Naokuni Takeda. "Relationship between neurosecretion and spermatogenesis in the leech, Erpobdella lineata." Comparative Biochemistry and Physiology Part A: Physiology 84, no. 3 (1986): 421–25. http://dx.doi.org/10.1016/0300-9629(86)90340-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Subrahmanyam, Bhattiprolu, Thomas Müller, and Heinz Rembold. "Inhibition of turnover of neurosecretion by azadirachtin in Locusta migratoria." Journal of Insect Physiology 35, no. 6 (1989): 493–500. http://dx.doi.org/10.1016/0022-1910(89)90056-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Tsuda, Kazushi, Hiroki Shima, Masato Kuchii, Ichiro Nishio, and Yoshiaki Masuyama. "Effects of Captopril on Neurosecretion and Vascular Responsiveness in Hypertension." Clinical and Experimental Hypertension. Part A: Theory and Practice 9, no. 2-3 (1987): 375–79. http://dx.doi.org/10.3109/10641968709164200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Thapliyal, Ashish, Rashmi Verma, and Navin Kumar. "Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes." International Journal of Cell Biology 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/308535.

Texto completo da fonte
Resumo:
Dexras1 and RHES, monomeric G proteins, are members of small GTPase family that are involved in modulation of pathophysiological processes. Dexras1 and RHES levels are modulated by hormones and Dexras1 expression undergoes circadian fluctuations. Both these GTPases are capable of modulating calcium ion channels which in turn can potentially modulate neurosecretion/hormonal release. These two GTPases have been reported to prevent the aberrant cell growth and induce apoptosis in cell lines. Present review focuses on role of these two monomeric GTPases and summarizes their role in pathophysiologi
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Acosta-Martínez, Maricedes, Ji Luo, Carol Elias, Andrew Wolfe та Jon E. Levine. "Male-Biased Effects of Gonadotropin-Releasing Hormone Neuron-Specific Deletion of the Phosphoinositide 3-Kinase Regulatory Subunit p85α on the Reproductive Axis". Endocrinology 150, № 9 (2009): 4203–12. http://dx.doi.org/10.1210/en.2008-1753.

Texto completo da fonte
Resumo:
Abstract GnRH neurosecretion is subject to regulation by insulin, IGF-I, leptin, and other neuroendocrine modulators whose effects may be conveyed by activation of phosphoinositide 3-kinase (PI3K)-mediated pathways. It is not known, however, whether any of these regulatory actions are exerted directly, via activation of PI3K in GnRH neurons, or whether they are primarily conveyed via effects on afferent circuitries governing GnRH neurosecretion. To investigate the role of PI3K signaling in GnRH neurons, we used conditional gene targeting to ablate expression of the major PI3K regulatory subuni
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Todd, Robert D., Sarah M. McDavid, Rebecca L. Brindley, Mark L. Jewell, and Kevin P. M. Currie. "Gabapentin Inhibits Catecholamine Release from Adrenal Chromaffin Cells." Anesthesiology 116, no. 5 (2012): 1013–24. http://dx.doi.org/10.1097/aln.0b013e31825153ea.

Texto completo da fonte
Resumo:
Background Gabapentin is most commonly prescribed for chronic pain, but acute perioperative effects, including preemptive analgesia and hemodynamic stabilization, have been reported. Adrenal chromaffin cells are a widely used model to investigate neurosecretion, and adrenal catecholamines play important physiologic roles and contribute to the acute stress response. However, the effects of gabapentin on adrenal catecholamine release have never been tested. Methods Primary cultures of bovine adrenal chromaffin cells were treated with gabapentin or vehicle for 18-24 h. The authors quantified cate
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Beltran, Beatriz, Romen Carrillo, Tomas Martin, Victor S. Martin, Jose D. Machado та Ricardo Borges. "Fluorescent β-Blockers as Tools to Study Presynaptic Mechanisms of Neurosecretion". Pharmaceuticals 4, № 5 (2011): 713–25. http://dx.doi.org/10.3390/ph4050713.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

RASMUSSEN, DENNIS D., JAMES H. LIU, PAUL L. WOLF, and SAMUEL S. C. YEN. "Gonadotropin-Releasing Hormone Neurosecretion in the Human Hypothalamus:In VitroRegulation by Dopamine*." Journal of Clinical Endocrinology & Metabolism 62, no. 3 (1986): 479–83. http://dx.doi.org/10.1210/jcem-62-3-479.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Sawn, Clark T. "Ulf Svante von Euler (1905–1983) and the Neurosecretion of Norepinephrine." Endocrinologist 9, no. 5 (1999): 327–30. http://dx.doi.org/10.1097/00019616-199909000-00001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Taverna, Elena, Elena Saba, Anna Linetti, et al. "Localization of synaptic proteins involved in neurosecretion in different membrane microdomains." Journal of Neurochemistry 100, no. 3 (2007): 664–77. http://dx.doi.org/10.1111/j.1471-4159.2006.04225.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Golding, David W., and David V. Pow. "‘Neurosecretion’ by Synaptic Terminals and Glandular Discharge in the Endocrine Pancreas." Neuroendocrinology 51, no. 4 (1990): 369–75. http://dx.doi.org/10.1159/000125363.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Kichko, T. I., S. Haux-Oertel, I. Izydorczyk, and P. W. Reeh. "189 STIMULATED NEUROSECRETION IN THE ISOLATED TRACHEA OF TRPV1 MUTANT MICE." European Journal of Pain 10, S1 (2006): S52. http://dx.doi.org/10.1016/s1090-3801(06)60192-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Grundschober, Christophe, Maria Luisa Malosio, Laura Astolfi, Tiziana Giordano, Patrick Nef, and Jacopo Meldolesi. "Neurosecretion competence. A comprehensive gene expression program identified in PC12 cells." Journal of Biological Chemistry 277, no. 48 (2002): 46840. http://dx.doi.org/10.1016/s0021-9258(19)33304-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Romano, Adele, Tommaso Cassano, Bianca Tempesta, et al. "The satiety signal oleoylethanolamide stimulates oxytocin neurosecretion from rat hypothalamic neurons." Peptides 49 (November 2013): 21–26. http://dx.doi.org/10.1016/j.peptides.2013.08.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Sapronov, N. S., and I. I. Stepanov. "Humoral component of regeneration and learning is a subcase of neurosecretion." European Neuropsychopharmacology 10 (September 2000): 384. http://dx.doi.org/10.1016/s0924-977x(00)80528-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Law, Chris, Matthijs Verhage, and Artur Kania. "ISDN2014_0279: Spinal neuron identity and survival in the absence of neurosecretion." International Journal of Developmental Neuroscience 47, Part_A (2015): 83. http://dx.doi.org/10.1016/j.ijdevneu.2015.04.227.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!