Artigos de revistas sobre o tema "Neurotrophic peptide"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Neurotrophic peptide".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Glazova, N. Yu, D. М. Manchenko, Е. А. Sebentsova, et al. "The effect of ACTH/MSH N-terminal fragment analogs on the anxiety level, pain sensitivity and levels of neurotrophic factors BDNF and VEGF in primary neuronal cultures of rats." Rossijskij fiziologičeskij žurnal im. I.M. Sečenova 110, no. 10 (2024): 1752–66. https://doi.org/10.31857/s0869813924100127.
Texto completo da fonteNotaras, Michael, and Maarten van den Buuse. "Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation." Neuroscientist 25, no. 5 (2018): 434–54. http://dx.doi.org/10.1177/1073858418810142.
Texto completo da fonteLongo, F. M., T. K. Vu, and W. C. Mobley. "The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides." Cell Regulation 1, no. 2 (1990): 189–95. http://dx.doi.org/10.1091/mbc.1.2.189.
Texto completo da fonteWetmore, C. J., Y. Cao, R. F. Pettersson, and L. Olson. "Brain-derived neurotrophic factor (BDNF) peptide antibodies: characterization using a Vaccinia virus expression system." Journal of Histochemistry & Cytochemistry 41, no. 4 (1993): 521–33. http://dx.doi.org/10.1177/41.4.8450192.
Texto completo da fonteRedigolo, Luigi, Vanessa Sanfilippo, Diego La Mendola, Giuseppe Forte, and Cristina Satriano. "Bioinspired Nanoplatforms Based on Graphene Oxide and Neurotrophin-Mimicking Peptides." Membranes 13, no. 5 (2023): 489. http://dx.doi.org/10.3390/membranes13050489.
Texto completo da fonteBaazaoui, Narjes, and Khalid Iqbal. "Alzheimer’s Disease: Challenges and a Therapeutic Opportunity to Treat It with a Neurotrophic Compound." Biomolecules 12, no. 10 (2022): 1409. http://dx.doi.org/10.3390/biom12101409.
Texto completo da fontePittenger, Gary, and Aaron Vinik. "Nerve Growth Factor and Diabetic Neuropathy." Experimental Diabesity Research 4, no. 4 (2003): 271–85. http://dx.doi.org/10.1155/edr.2003.271.
Texto completo da fonteWang, Rong, Jing-Yan Zhang, Fang Yang, Zhi-Juan Ji, Goutam Chakraborty, and Shu-Li Sheng. "A novel neurotrophic peptide: APP63-73." NeuroReport 15, no. 17 (2004): 2677–80. http://dx.doi.org/10.1097/00001756-200412030-00025.
Texto completo da fonteJoliot, A., I. Le Roux, M. Volovitch, E. Bloch-Gallego, and A. Prochiantz. "Neurotrophic activity of a homeobox peptide." Progress in Neurobiology 42, no. 2 (1994): 309–11. http://dx.doi.org/10.1016/0301-0082(94)90070-1.
Texto completo da fonteSima, Anders A. F., Weixian Zhang, Zhen-guo Li, and Hideki Kamiya. "The Effects of C-peptide on Type 1 Diabetic Polyneuropathies and Encephalopathy in the BB/Wor-rat." Experimental Diabetes Research 2008 (2008): 1–13. http://dx.doi.org/10.1155/2008/230458.
Texto completo da fonteMizui, Toshiyuki, Yasuyuki Ishikawa, Haruko Kumanogoh, et al. "BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met." Proceedings of the National Academy of Sciences 112, no. 23 (2015): E3067—E3074. http://dx.doi.org/10.1073/pnas.1422336112.
Texto completo da fonteAngelucci, Francesco, Francesca Gelfo, Marco Fiore, et al. "The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer’s disease." Canadian Journal of Physiology and Pharmacology 92, no. 8 (2014): 621–30. http://dx.doi.org/10.1139/cjpp-2014-0099.
Texto completo da fonteChohan, Muhammad Omar, Olga Bragina, Syed Faraz Kazim, et al. "Enhancement of Neurogenesis and Memory by a Neurotrophic Peptide in Mild to Moderate Traumatic Brain Injury." Neurosurgery 76, no. 2 (2014): 201–15. http://dx.doi.org/10.1227/neu.0000000000000577.
Texto completo da fonteAbdulla, Fuad A., Timothy D. Moran, Sridhar Balasubramanyan, and Peter A. Smith. "Effects and consequences of nerve injury on the electrical properties of sensory neurons." Canadian Journal of Physiology and Pharmacology 81, no. 7 (2003): 663–82. http://dx.doi.org/10.1139/y03-064.
Texto completo da fonteLee, Eun Hye, Seon Sook Kim, Seul Lee, Kwan-Hyuck Baek, and Su Ryeon Seo. "Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Targets Down Syndrome Candidate Region 1 (DSCR1/RCAN1) to control Neuronal Differentiation." Journal of Biological Chemistry 290, no. 34 (2015): 21019–31. http://dx.doi.org/10.1074/jbc.m115.639476.
Texto completo da fonteBrenneman, D. E., E. A. Neale, G. A. Foster, S. W. d'Autremont, and G. L. Westbrook. "Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide." Journal of Cell Biology 104, no. 6 (1987): 1603–10. http://dx.doi.org/10.1083/jcb.104.6.1603.
Texto completo da fonteIshiguro, Mariko, Miyuki Murayama, Akira Oomori, and Tokiko Hama. "1412 A peptide which has neurotrophic factor-like activities." Neuroscience Research Supplements 18 (January 1993): S149. http://dx.doi.org/10.1016/s0921-8696(05)81094-1.
Texto completo da fonteIgase, Keiji, Seiji Matsuda, Jyunya Tanaka, and Masahiro Sakanaka. "1236 Neurotrophic activity of prosaposin 18-mer peptide fragment." Neuroscience Research 28 (January 1997): S160. http://dx.doi.org/10.1016/s0168-0102(97)90430-2.
Texto completo da fonteSheng, Shu Li, Rong Wang, Zhi Quan Ji, Fang Yang, and Jing Yan Zhang. "Amyloid protein precursor 63–73 peptide sequence is neurotrophic." Neurobiology of Aging 21 (May 2000): 258. http://dx.doi.org/10.1016/s0197-4580(00)83113-9.
Texto completo da fonteDogrukol-Ak, Dilek, Vijaya B. Kumar, Jan S. Ryerse, et al. "Isolation of Peptide Transport System-6 from Brain Endothelial Cells: Therapeutic Effects with Antisense Inhibition in Alzheimer and Stroke Models." Journal of Cerebral Blood Flow & Metabolism 29, no. 2 (2008): 411–22. http://dx.doi.org/10.1038/jcbfm.2008.131.
Texto completo da fonteRoytrakul, Sittiruk, Janthima Jaresitthikunchai, Narumon Phaonakrop, et al. "Secretomic changes of amyloid beta peptides on Alzheimer’s disease related proteins in differentiated human SH-SY5Y neuroblastoma cells." PeerJ 12 (July 17, 2024): e17732. http://dx.doi.org/10.7717/peerj.17732.
Texto completo da fonteMagrì, Antonio, and Diego La Mendola. "Copper Binding Features of Tropomyosin-Receptor-Kinase-A Fragment: Clue for Neurotrophic Factors and Metals Link." International Journal of Molecular Sciences 19, no. 8 (2018): 2374. http://dx.doi.org/10.3390/ijms19082374.
Texto completo da fonteLiu, Xingyu, Haiyuan Ren, Ai Peng, et al. "The Effect of RADA16-I and CDNF on Neurogenesis and Neuroprotection in Brain Ischemia-Reperfusion Injury." International Journal of Molecular Sciences 23, no. 3 (2022): 1436. http://dx.doi.org/10.3390/ijms23031436.
Texto completo da fonteJarvis, C. R., Z. G. Xiong, J. R. Plant, et al. "Neurotrophin Modulation of NMDA Receptors in Cultured Murine and Isolated Rat Neurons." Journal of Neurophysiology 78, no. 5 (1997): 2363–71. http://dx.doi.org/10.1152/jn.1997.78.5.2363.
Texto completo da fonteLu, Jiaju, Xun Sun, Heyong Yin, et al. "A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration." Nano Research 11, no. 9 (2018): 4599–613. http://dx.doi.org/10.1007/s12274-018-2041-9.
Texto completo da fonteShearon, Jennifer, Baylie Rushing, Madeleine Love, and Denise Head. "BLOOD-BASED CARDIAC BIOMARKERS AND PHYSICAL ACTIVITY: PRELIMINARY RESULTS." Innovation in Aging 8, Supplement_1 (2024): 1081–82. https://doi.org/10.1093/geroni/igae098.3475.
Texto completo da fonteO'Leary, Paul D., and Richard A. Hughes. "Design of Potent Peptide Mimetics of Brain-derived Neurotrophic Factor." Journal of Biological Chemistry 278, no. 28 (2003): 25738–44. http://dx.doi.org/10.1074/jbc.m303209200.
Texto completo da fonteValk, Gerlof D., Arnoud C. Kappelle, Aim�e M. L. Tjon-A-Tsien, et al. "Treatment of diabetic polyneuropathy with the neurotrophic peptide ORG 2766." Journal of Neurology 243, no. 3 (1996): 257–63. http://dx.doi.org/10.1007/bf00868523.
Texto completo da fonteYao, Jie, Lina Ma, Rong Wang, Shuli Sheng, Zhijuan Ji, and Jingyan Zhang. "Neurotrophic effects of amyloid precursor protein peptide 165 in vitro." Brain Research Bulletin 120 (January 2016): 58–62. http://dx.doi.org/10.1016/j.brainresbull.2015.11.005.
Texto completo da fonteKim, Inhyeok, Yonjae Kim, Daewoong Kang, et al. "Neuropeptides Involved in Facial Nerve Regeneration." Biomedicines 9, no. 11 (2021): 1575. http://dx.doi.org/10.3390/biomedicines9111575.
Texto completo da fonteLiu, Jing, Pu Chen, Hongdong Song, et al. "Prediction of Cholecystokinin-Secretory Peptides Using Bidirectional Long Short-term Memory Model Based on Transfer Learning and Hierarchical Attention Network Mechanism." Biomolecules 13, no. 9 (2023): 1372. http://dx.doi.org/10.3390/biom13091372.
Texto completo da fonteWilliams, Gareth, Gareth Williams, Francisco Molina-Holgado, Francisco Molina-Holgado, Patrick Doherty, and Patrick Doherty. "Tandem Repeat Peptide Strategy for the Design of Neurotrophic Factor Mimetics." CNS & Neurological Disorders - Drug Targets 7, no. 1 (2008): 110–19. http://dx.doi.org/10.2174/187152708783885200.
Texto completo da fonteGozes, Illana, and Irit Spivak-Pohis. "Neurotrophic Effects of the Peptide NAP: A Novel Neuroprotective Drug Candidate." Current Alzheimer Research 3, no. 3 (2006): 197–99. http://dx.doi.org/10.2174/156720506777632790.
Texto completo da fonteGrundke-Iqbal, Inge, M. Omar Chohan, Bin Li, Julie Blanchard, and Khalid Iqbal. "O4-04-08: Improvement of cognition with a neurogenic/neurotrophic peptide." Alzheimer's & Dementia 4 (July 2008): T193. http://dx.doi.org/10.1016/j.jalz.2008.05.534.
Texto completo da fonteBRENNEMAN, DOUGLAS E., TERRY M. PHILLIPS, BARRY W. FESTOFF, and ILLANA GOZES. "Identity of Neurotrophic Molecules Released from Astroglia by Vasoactive Intestinal Peptide." Annals of the New York Academy of Sciences 814, no. 1 Neuropeptides (1997): 167–73. http://dx.doi.org/10.1111/j.1749-6632.1997.tb46155.x.
Texto completo da fonteBrenneman, Douglas E., T. Nicol, D. Warren, and L. M. Bowers. "Vasoactive intestinal peptide: A neurotrophic releasing agent and an astroglial mitogen." Journal of Neuroscience Research 25, no. 3 (1990): 386–94. http://dx.doi.org/10.1002/jnr.490250316.
Texto completo da fonteCandalija, Ana, Thomas Scior, Hans-Richard Rackwitz, Jordan E. Ruiz-Castelan, Ygnacio Martinez-Laguna, and José Aguilera. "Interaction between a Novel Oligopeptide Fragment of the Human Neurotrophin Receptor TrkB Ectodomain D5 and the C-Terminal Fragment of Tetanus Neurotoxin." Molecules 26, no. 13 (2021): 3988. http://dx.doi.org/10.3390/molecules26133988.
Texto completo da fonteEkberg, Karin, and Bo-Lennart Johansson. "Effect of C-Peptide on Diabetic Neuropathy in Patients with Type 1 Diabetes." Experimental Diabetes Research 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/457912.
Texto completo da fonteStorey, A. T., and D. J. Kenny. "Growth, Development, and Aging of Orofacial Tissues: Neural Aspects." Advances in Dental Research 3, no. 1 (1989): 14–29. http://dx.doi.org/10.1177/08959374890030010101.
Texto completo da fonteJu, Da-Tong, Ashok Kumar K., Wei-Wen Kuo, et al. "Bioactive Peptide VHVV Upregulates the Long-Term Memory-Related Biomarkers in Adult Spontaneously Hypertensive Rats." International Journal of Molecular Sciences 20, no. 12 (2019): 3069. http://dx.doi.org/10.3390/ijms20123069.
Texto completo da fonteLiu, Mingchuan, Shengjie Yang, Jinping Yang, Yita Lee, Junping Kou, and Chaojih Wang. "Neuroprotective and Memory-Enhancing Effects of Antioxidant Peptide From Walnut (Juglans regia L.) Protein Hydrolysates." Natural Product Communications 14, no. 7 (2019): 1934578X1986583. http://dx.doi.org/10.1177/1934578x19865838.
Texto completo da fonteNikitina, Alexandra A., Svetlana G. Belokoskova, Victoria A. Maystrenko, et al. "The participation of monoamines in the realization of vasopressin analgesic effects during electrical stimulation of paws in rats." Medical academic journal 24, no. 2 (2024): 45–52. http://dx.doi.org/10.17816/maj633203.
Texto completo da fonteGul, Huseyin Fatih, Caner Yildirim, Can Emre Erdogan, Ozlem Gul та Nazlı Koc. "The Role of Galanin, Alarin, Irisin, PGC1-Α and BDNF in the Pathophysiology of Alzheimer's disease". International Journal of Medical Science and Clinical Invention 8, № 06 (2021): 5498–507. http://dx.doi.org/10.18535/ijmsci/v8i06.09.
Texto completo da fonteKim, Sokho, Jihye Choi, and Jungkee Kwon. "Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106–126) via Neurotrophic Factor Signaling." Molecules 28, no. 9 (2023): 3920. http://dx.doi.org/10.3390/molecules28093920.
Texto completo da fontePriestley, J. V., G. J. Michael, S. Averill, M. Liu, and N. Willmott. "Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor." Canadian Journal of Physiology and Pharmacology 80, no. 5 (2002): 495–505. http://dx.doi.org/10.1139/y02-034.
Texto completo da fontePerlikowska, Renata, Angelika Długosz-Pokorska, Małgorzata Domowicz, Sylwia Grabowicz, Mariusz Stasiołek, and Małgorzata Zakłos-Szyda. "Reduction in SH-SY5Y Cell Stress Induced by Corticosterone and Attenuation of the Inflammatory Response in RAW 264.7 Cells Using Endomorphin Analogs." Biomedicines 13, no. 7 (2025): 1774. https://doi.org/10.3390/biomedicines13071774.
Texto completo da fonteSafruddin, Khairu Zein, Ardhin Martdana, Fenska Seipalla, and Tirza Sosanta. "Organoruthenium 9E1 and APL Altered Collagen II263-272 Peptide as Therapy for Autoimmune Diseases." Journal of Health Science and Medical Therapy 1, no. 02 (2023): 61–70. http://dx.doi.org/10.59653/jhsmt.v1i02.277.
Texto completo da fonteYue, Mengyun, Jing Wei, Wenjie Chen, Daojun Hong, Tingtao Chen, and Xin Fang. "Neurotrophic Role of the Next-Generation Probiotic Strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson’s Disease via Inhibiting Ferroptosis." Nutrients 14, no. 22 (2022): 4886. http://dx.doi.org/10.3390/nu14224886.
Texto completo da fonteXiao, Junhua, Richard A. Hughes, Joe Y. Lim, et al. "A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination." Journal of Neurochemistry 125, no. 3 (2013): 386–98. http://dx.doi.org/10.1111/jnc.12168.
Texto completo da fonteLim, Juhee, Seokhee Kim, Changhyun Lee, Jeongwoo Park, Gabsik Yang, and Taehan Yook. "Verbenalin Reduces Amyloid-Beta Peptide Generation in Cellular and Animal Models of Alzheimer’s Disease." Molecules 27, no. 24 (2022): 8678. http://dx.doi.org/10.3390/molecules27248678.
Texto completo da fonte