Literatura científica selecionada sobre o tema "Neurovirulence"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Neurovirulence".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Neurovirulence"
Rubin, Steven A., Georgios Amexis, Mikhail Pletnikov, Jacqueline Vanderzanden, Jeremy Mauldin, Christian Sauder, Tahir Malik, Konstantin Chumakov e Kathryn M. Carbone. "Changes in Mumps Virus Gene Sequence Associated with Variability in Neurovirulent Phenotype". Journal of Virology 77, n.º 21 (1 de novembro de 2003): 11616–24. http://dx.doi.org/10.1128/jvi.77.21.11616-11624.2003.
Texto completo da fonteRubin, Steven A., Mikhail Pletnikov e Kathryn M. Carbone. "Comparison of the Neurovirulence of a Vaccine and a Wild-Type Mumps Virus Strain in the Developing Rat Brain". Journal of Virology 72, n.º 10 (1 de outubro de 1998): 8037–42. http://dx.doi.org/10.1128/jvi.72.10.8037-8042.1998.
Texto completo da fonteLi, Yun, Li Fu, Donna M. Gonzales e Ehud Lavi. "Coronavirus Neurovirulence Correlates with the Ability of the Virus To Induce Proinflammatory Cytokine Signals from Astrocytes and Microglia". Journal of Virology 78, n.º 7 (1 de abril de 2004): 3398–406. http://dx.doi.org/10.1128/jvi.78.7.3398-3406.2004.
Texto completo da fonteGoldsmith, Kim, Wei Chen, David C. Johnson e Robert L. Hendricks. "Infected Cell Protein (ICP)47 Enhances Herpes Simplex Virus Neurovirulence by Blocking the CD8+ T Cell Response". Journal of Experimental Medicine 187, n.º 3 (2 de fevereiro de 1998): 341–48. http://dx.doi.org/10.1084/jem.187.3.341.
Texto completo da fonteMoeller, Kerstin, Iain Duffy, Paul Duprex, Bert Rima, Rudi Beschorner, Susanne Fauser, Richard Meyermann, Stefan Niewiesk, Volker ter Meulen e Jürgen Schneider-Schaulies. "Recombinant Measles Viruses Expressing Altered Hemagglutinin (H) Genes: Functional Separation of Mutations Determining H Antibody Escape from Neurovirulence". Journal of Virology 75, n.º 16 (15 de agosto de 2001): 7612–20. http://dx.doi.org/10.1128/jvi.75.16.7612-7620.2001.
Texto completo da fonteBray, Michael, Ruhe Men, Issei Tokimatsu e Ching-Juh Lai. "Genetic Determinants Responsible for Acquisition of Dengue Type 2 Virus Mouse Neurovirulence". Journal of Virology 72, n.º 2 (1 de fevereiro de 1998): 1647–51. http://dx.doi.org/10.1128/jvi.72.2.1647-1651.1998.
Texto completo da fontePerng, Guey-Chuen, Kevin R. Mott, Nelson Osorio, Ada Yukht, Susan Salina, Quynh-Hoa Nguyen, Anthony B. Nesburn e Steven L. Wechsler. "Herpes simplex virus type 1 mutants containing the KOS strain ICP34.5 gene in place of the McKrae ICP34.5 gene have McKrae-like spontaneous reactivation but non-McKrae-like virulence". Journal of General Virology 83, n.º 12 (1 de dezembro de 2002): 2933–42. http://dx.doi.org/10.1099/0022-1317-83-12-2933.
Texto completo da fonteIacono, Kathryn T., Lubna Kazi e Susan R. Weiss. "Both Spike and Background Genes Contribute to Murine Coronavirus Neurovirulence". Journal of Virology 80, n.º 14 (15 de julho de 2006): 6834–43. http://dx.doi.org/10.1128/jvi.00432-06.
Texto completo da fontePortis, J. L., P. Askovich, J. Austin, Y. Gutierrez-Cotto e F. J. McAtee. "The Degree of Folding Instability of the Envelope Protein of a Neurovirulent Murine Retrovirus Correlates with the Severity of the Neurological Disease". Journal of Virology 83, n.º 12 (1 de abril de 2009): 6079–86. http://dx.doi.org/10.1128/jvi.02647-08.
Texto completo da fonteArroyo, Juan, Farshad Guirakhoo, Sabine Fenner, Zhen-Xi Zhang, Thomas P. Monath e Thomas J. Chambers. "Molecular Basis for Attenuation of Neurovirulence of a Yellow Fever Virus/Japanese Encephalitis Virus Chimera Vaccine (ChimeriVax-JE)". Journal of Virology 75, n.º 2 (15 de janeiro de 2001): 934–42. http://dx.doi.org/10.1128/jvi.75.2.934-942.2001.
Texto completo da fonteTeses / dissertações sobre o assunto "Neurovirulence"
Lemon, Ken. "Molecular determinants of mumps virus neurovirulence". Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426705.
Texto completo da fonteDambrosi, Sarah. "Neurovirulence et latence des virus Herpes simplex mutants". Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26368/26368.pdf.
Texto completo da fonteTecle, Tesfaldet. "Biomolecular characterization of mumps virus genotypes with varying neurovirulence /". Stockholm : [Karolinska institutets bibl.], 2002. http://diss.kib.ki.se/2002/91-7349-234-5.
Texto completo da fonteSutherland, Danica Marie. "Functions of the Viral Attachment Protein in Reovirus Neurovirulence". Thesis, Vanderbilt University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13877290.
Texto completo da fonteViral invasion of the central nervous system (CNS) is a significant cause of morbidity and mortlity worldwide, particularly in young children (1). The nervous system presents a challenging site for viruses to access, with multiple physical and immunological barriers that limit pathogen invasion. To invade the CNS, viruses must access cell-surface receptors for binding and entry events. Virus-receptor interactions also govern tropism and often control disease type and severity. For many viruses, the identities of receptors and other cellular determinants of viral tropism remain elusive. Understanding where and how viral capsid components engage neural receptors and the effect of these interactions on tropism and disease may illuminate targets to prevent viral neuroinvasion.
Mammalian orthoreoviruses (reoviruses) provide a highly tractable and well-established system to identify mechanisms of viral entry into the CNS. Reoviruses are non-enveloped particles containing a 10-segmented, double-stranded (ds) RNA genome that replicate well in culture and can be altered via a robust reverse-genetics system (2, 3). While reovirus causes similar age-restricted disease in many young mammals (4-6), most studies employ newborn mice. Following peroral or intracranial inoculation of newborn mice, reovirus displays serotype-specific patterns of tropism in the brain and concomitant disease (Fig. I-1). Serotype 1 (T1) strains infect ependymal cells lining the ventricles of the brain and cause a non-lethal hydrocephalus (7). In contrast, serotype 3 (T3) strains infect specific neuron populations in the CNS and produce a fulminant, and often lethal, encephalitis (8). These differences in tropism and disease have been genetically mapped to the reovirus S1 gene using single-gene reassortant viruses (9). However, viral and host gene sequences that mediate either T1 or T3 tropism have not been defined.
In Chapter I of my dissertation, I introduce key themes about mechanisms of neuroinvasion and the disease consequences of CNS infection. I describe fundamental knowledge and open areas of research pertaining to reovirus infection in the CNS and expand on reovirus-receptor interactions. I conclude Chapter I with a summary of viral oncolytic therapies and highlight strengths and opportunities for improvement of reovirus oncolytics. In Chapter II, I describe the design and implementation of σ1- chimeric reoviruses to identify sequences in the S1 gene that dictate neurotropism and virulence in the CNS. In these studies, I found that homologous sequences at the viriondistal end of the viral attachment protein are responsible for neuron and ependymal cell targeting. In Chapter III, I identify sequences of the NgR1 reovirus receptor that are required for binding and post-binding functions and elucidate the viral ligand for NgR1, which is the σ3 outer-capsid protein, using a combination of genetic, biochemical, and structural approaches. Finally, in Chapter IV, I review conclusions from results presented in Chapters II and III, examine new questions raised by these studies, and discuss future directions of this work. Collectively, my dissertation research has unveiled viral and host sequences that contribute to neural cell targeting and will improve strategies and knowledge to design targeted oncolytic therapies.
Renszel, Krystal Marie. "USING MUTAGENESIS AND STEM CELLS TO UNDERSTAND RETROVIRAL NEUROVIRULENCE". Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1254659655.
Texto completo da fonteFraipont, Florence de. "Caractérisation et utilisation des déterminants phénotypiques et moléculaires de la neurovirulence et de l'atténuation des souches de poliovirus". Strasbourg 1, 1992. http://www.theses.fr/1992STR15085.
Texto completo da fonteCHRISTODOULOU, CHRISTINA. "Le neurotropisme du poliovirus : bases moleculaires de la neurovirulence, et persistance virale". Paris 7, 1990. http://www.theses.fr/1990PA077022.
Texto completo da fonteMallet, Laurent. "Analyse qualitative et quantitative des marqueurs moléculaires majeurs de la neurovirulence des poliovirus". Lyon 1, 1996. http://www.theses.fr/1996LYO1T195.
Texto completo da fonteCarsillo, Thomas John. "A role for the major inducible 70 KDA heat shock protein (HSP72) in experimental measles encephalitis". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141316578.
Texto completo da fonteSabaratnam, Keshalini. "The interaction between the Marek's Disease Virus (MDV) neurovirulence factor pp14 and the host transcription factor, CREB3". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:d2fc6bd4-bc3a-4a37-924b-86881096a9b5.
Texto completo da fonteCapítulos de livros sobre o assunto "Neurovirulence"
Agol, Vadim I. "Poliovirus Neurovirulence and its Attenuation". In Regulation of Gene Expression in Animal Viruses, 305–21. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2928-6_21.
Texto completo da fonteJackson, A. C. "Animal Models of Rabies Virus Neurovirulence". In Current Topics in Microbiology and Immunology, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78490-3_5.
Texto completo da fonteLevine, Myron, David J. Fink, Ramesh Ramakrishnan, Prashant Desai, William F. Goins e Joseph C. Glorioso. "Neurovirulence of Herpes Simplex Virus Type 1 Accessory Gene Mutants". In Pathogenicity of Human Herpesviruses due to Specific Pathogenicity Genes, 222–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85004-2_13.
Texto completo da fonteFujimura, R. K., P. Shapshak, D. M. Segal, K. A. Crandall, K. Goodkin, J. B. Page, R. Douyon et al. "Viral and Host Determinants of Neurovirulence of HIV-1 Infection". In Advances in Experimental Medicine and Biology, 241–53. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5347-2_27.
Texto completo da fonteSolomon, T., e P. M. Winter. "Neurovirulence and host factors in flavivirus encephalitis — evidence from clinical epidemiology". In Emergence and Control of Zoonotic Viral Encephalitides, 161–70. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0572-6_14.
Texto completo da fontePower, C., J. C. McArthur, R. T. Johnson, D. E. Griffin, J. D. Glass, R. Dewey e B. Chesebro. "Distinct HIV-1 env Sequences Are Associated with Neurotropism and Neurovirulence". In Current Topics in Microbiology and Immunology, 89–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79657-9_7.
Texto completo da fonteMatsuyama, Shutoku, Rihito Watanabe e Fumihiro Taguchi. "Neurovirulence for Mice of Soluble Receptor-Resistant Mutants of Murine Coronavirus JHMV". In Advances in Experimental Medicine and Biology, 145–48. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1325-4_23.
Texto completo da fonteWege, H., J. Winter, P. Massa, R. Dörries e V. ter Meulen. "Coronavirus JHM Induced Demyelinating Disease: Specific Domains on the E2-Protein are Associated with Neurovirulence". In Coronaviruses, 307–20. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-1280-2_40.
Texto completo da fonteTaguchi, Fumihiro, Hideka Suzuki, Hiromi Takahashi e Hideyuki Kubo. "Neurovirulence for Rats of the JHMV Variants Escaped from Neutralization with the S1-Specific Monoclonal Antibodies". In Advances in Experimental Medicine and Biology, 185–87. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1899-0_31.
Texto completo da fonteBen-Nathan, D., S. Lustig e G. Feuerstein. "The Effect of Cold or Isolation Stress on Neuroinvasiveness and Neurovirulence of an Avirulent Variant of West Nile Virus (WN-25)". In Psychiatry and Biological Factors, 295–306. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5811-4_27.
Texto completo da fonte