Literatura científica selecionada sobre o tema "Non-identically distributed data"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Non-identically distributed data".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Non-identically distributed data"
A AlSaiary, Zakeia. "Analyzing Order Statistics of Non-Identically Distributed Shifted Exponential Variables in Numerical Data". International Journal of Science and Research (IJSR) 13, n.º 11 (5 de novembro de 2024): 1264–70. http://dx.doi.org/10.21275/sr241116231011.
Texto completo da fonteTiurev, Konstantin, Peter-Jan H. S. Derks, Joschka Roffe, Jens Eisert e Jan-Michael Reiner. "Correcting non-independent and non-identically distributed errors with surface codes". Quantum 7 (26 de setembro de 2023): 1123. http://dx.doi.org/10.22331/q-2023-09-26-1123.
Texto completo da fonteZhu, Feng, Jiangshan Hao, Zhong Chen, Yanchao Zhao, Bing Chen e Xiaoyang Tan. "STAFL: Staleness-Tolerant Asynchronous Federated Learning on Non-iid Dataset". Electronics 11, n.º 3 (20 de janeiro de 2022): 314. http://dx.doi.org/10.3390/electronics11030314.
Texto completo da fonteWu, Jikun, JiaHao Yu e YuJun Zheng. "Research on Federated Learning Algorithms in Non-Independent Identically Distributed Scenarios". Highlights in Science, Engineering and Technology 85 (13 de março de 2024): 104–12. http://dx.doi.org/10.54097/7newsv97.
Texto completo da fonteJiang, Yingrui, Xuejian Zhao, Hao Li e Yu Xue. "A Personalized Federated Learning Method Based on Knowledge Distillation and Differential Privacy". Electronics 13, n.º 17 (6 de setembro de 2024): 3538. http://dx.doi.org/10.3390/electronics13173538.
Texto completo da fonteBabar, Muhammad, Basit Qureshi e Anis Koubaa. "Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging". PLOS ONE 19, n.º 5 (15 de maio de 2024): e0302539. http://dx.doi.org/10.1371/journal.pone.0302539.
Texto completo da fonteLayne, Elliot, Erika N. Dort, Richard Hamelin, Yue Li e Mathieu Blanchette. "Supervised learning on phylogenetically distributed data". Bioinformatics 36, Supplement_2 (dezembro de 2020): i895—i902. http://dx.doi.org/10.1093/bioinformatics/btaa842.
Texto completo da fonteShahrivari, Farzad, e Nikola Zlatanov. "On Supervised Classification of Feature Vectors with Independent and Non-Identically Distributed Elements". Entropy 23, n.º 8 (13 de agosto de 2021): 1045. http://dx.doi.org/10.3390/e23081045.
Texto completo da fonteLv, Yankai, Haiyan Ding, Hao Wu, Yiji Zhao e Lei Zhang. "FedRDS: Federated Learning on Non-IID Data via Regularization and Data Sharing". Applied Sciences 13, n.º 23 (4 de dezembro de 2023): 12962. http://dx.doi.org/10.3390/app132312962.
Texto completo da fonteZhang, Xufei, e Yiqing Shen. "Non-IID federated learning with Mixed-Data Calibration". Applied and Computational Engineering 45, n.º 1 (15 de março de 2024): 168–78. http://dx.doi.org/10.54254/2755-2721/45/20241048.
Texto completo da fonteTeses / dissertações sobre o assunto "Non-identically distributed data"
Dabo, Issa-Mbenard. "Applications de la théorie des matrices aléatoires en grandes dimensions et des probabilités libres en apprentissage statistique par réseaux de neurones". Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0021.
Texto completo da fonteThe functioning of machine learning algorithms relies heavily on the structure of the data they are given to study. Most research work in machine learning focuses on the study of homogeneous data, often modeled by independent and identically distributed random variables. However, data encountered in practice are often heterogeneous. In this thesis, we propose to consider heterogeneous data by endowing them with a variance profile. This notion, derived from random matrix theory, allows us in particular to study data arising from mixture models. We are particularly interested in the problem of ridge regression through two models: the linear ridge model and the random feature ridge model. In this thesis, we study the performance of these two models in the high-dimensional regime, i.e., when the size of the training sample and the dimension of the data tend to infinity at comparable rates. To this end, we propose asymptotic equivalents for the training error and the test error associated with the models of interest. The derivation of these equivalents relies heavily on spectral analysis from random matrix theory, free probability theory, and traffic theory. Indeed, the performance measurement of many learning models depends on the distribution of the eigenvalues of random matrices. Moreover, these results enabled us to observe phenomena specific to the high-dimensional regime, such as the double descent phenomenon. Our theoretical study is accompanied by numerical experiments illustrating the accuracy of the asymptotic equivalents we provide
Capítulos de livros sobre o assunto "Non-identically distributed data"
"Models with dependent and with non-identically distributed data". In Quantile Regression, 131–62. Oxford: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118752685.ch5.
Texto completo da fonteLele, S. "Resampling using estimating equations". In Estimating Functions, 295–304. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198522287.003.0022.
Texto completo da fonteTarima, Sergey, e Nancy Flournoy. "Choosing Interim Sample Sizes in Group Sequential Designs". In German Medical Data Sciences: Bringing Data to Life. IOS Press, 2021. http://dx.doi.org/10.3233/shti210043.
Texto completo da fonteZhao, Juan, Yuankai Zhang, Ruixuan Li, Yuhua Li, Haozhao Wang, Xiaoquan Yi e Zhiying Deng. "XFed: Improving Explainability in Federated Learning by Intersection Over Union Ratio Extended Client Selection". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230628.
Texto completo da fonteLuo, Zicheng, Xiaohan Li, Demu Zou e Hao Bai. "Federated Reinforcement Learning Algorithm with Fair Aggregation for Edge Caching". In Advances in Transdisciplinary Engineering. IOS Press, 2024. https://doi.org/10.3233/atde241221.
Texto completo da fonteFeng, Chao, Alberto Huertas Celdrán, Janosch Baltensperger, Enrique Tomás Martínez Beltrán, Pedro Miguel Sánchez Sánchez, Gérôme Bovet e Burkhard Stiller. "Sentinel: An Aggregation Function to Secure Decentralized Federated Learning". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240686.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Non-identically distributed data"
Zhou, Zihao, Han Chen, Huageng Liu, Zeyu Ping e Yuanyuan Song. "Distributed radar incoherent fusion method for independent non-identically distributed fluctuating targets". In 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 1–4. IEEE, 2024. https://doi.org/10.1109/icsidp62679.2024.10868151.
Texto completo da fonteZhang, Bosong, Qian Sun, Hai Wang, Linna Zhang e Danyang Li. "Federated Learning Greedy Aggregation Optimization for Non-Independently Identically Distributed Data". In 2024 IEEE 23rd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2090–97. IEEE, 2024. https://doi.org/10.1109/trustcom63139.2024.00290.
Texto completo da fonteNie, Wenjing. "Research on federated model algorithm based on non-independent identically distributed data sets". In International Conference on Mechatronics and Intelligent Control (ICMIC 2024), editado por Kun Zhang e Pascal Lorenz, 130. SPIE, 2025. https://doi.org/10.1117/12.3045715.
Texto completo da fonteTillman, Robert E. "Structure learning with independent non-identically distributed data". In the 26th Annual International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1553374.1553507.
Texto completo da fonteHu, Liang, Wei Cao, Jian Cao, Guandong Xu, Longbing Cao e Zhiping Gu. "Bayesian Heteroskedastic Choice Modeling on Non-identically Distributed Linkages". In 2014 IEEE International Conference on Data Mining (ICDM). IEEE, 2014. http://dx.doi.org/10.1109/icdm.2014.84.
Texto completo da fonteLi, Haowei, Like Luo e Haolong Wang. "Federated learning on non-independent and identically distributed data". In Third International Conference on Machine Learning and Computer Application (ICMLCA 2022), editado por Fan Zhou e Shuhong Ba. SPIE, 2023. http://dx.doi.org/10.1117/12.2675255.
Texto completo da fonteMreish, Kinda, e Ivan I. Kholod. "Federated Learning with Non Independent and Identically Distributed Data". In 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon). IEEE, 2024. http://dx.doi.org/10.1109/elcon61730.2024.10468090.
Texto completo da fontePan, Wentao, e Hui Zhou. "Fairness and Effectiveness in Federated Learning on Non-independent and Identically Distributed Data". In 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI). IEEE, 2023. http://dx.doi.org/10.1109/ccai57533.2023.10201271.
Texto completo da fonteShahrivari, Farzad, e Nikola Zlatanov. "An Asymptotically Optimal Algorithm For Classification of Data Vectors with Independent Non-Identically Distributed Elements". In 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9518006.
Texto completo da fonteHodea, Octavian, Adriana Vlad e Octaviana Datcu. "Evaluating the sampling distance to achieve independently and identically distributed data from generalized Hénon map". In 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2011. http://dx.doi.org/10.1109/isscs.2011.5978665.
Texto completo da fonte