Artigos de revistas sobre o tema "Non-identically distributed data"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Non-identically distributed data".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
A AlSaiary, Zakeia. "Analyzing Order Statistics of Non-Identically Distributed Shifted Exponential Variables in Numerical Data". International Journal of Science and Research (IJSR) 13, n.º 11 (5 de novembro de 2024): 1264–70. http://dx.doi.org/10.21275/sr241116231011.
Texto completo da fonteTiurev, Konstantin, Peter-Jan H. S. Derks, Joschka Roffe, Jens Eisert e Jan-Michael Reiner. "Correcting non-independent and non-identically distributed errors with surface codes". Quantum 7 (26 de setembro de 2023): 1123. http://dx.doi.org/10.22331/q-2023-09-26-1123.
Texto completo da fonteZhu, Feng, Jiangshan Hao, Zhong Chen, Yanchao Zhao, Bing Chen e Xiaoyang Tan. "STAFL: Staleness-Tolerant Asynchronous Federated Learning on Non-iid Dataset". Electronics 11, n.º 3 (20 de janeiro de 2022): 314. http://dx.doi.org/10.3390/electronics11030314.
Texto completo da fonteWu, Jikun, JiaHao Yu e YuJun Zheng. "Research on Federated Learning Algorithms in Non-Independent Identically Distributed Scenarios". Highlights in Science, Engineering and Technology 85 (13 de março de 2024): 104–12. http://dx.doi.org/10.54097/7newsv97.
Texto completo da fonteJiang, Yingrui, Xuejian Zhao, Hao Li e Yu Xue. "A Personalized Federated Learning Method Based on Knowledge Distillation and Differential Privacy". Electronics 13, n.º 17 (6 de setembro de 2024): 3538. http://dx.doi.org/10.3390/electronics13173538.
Texto completo da fonteBabar, Muhammad, Basit Qureshi e Anis Koubaa. "Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging". PLOS ONE 19, n.º 5 (15 de maio de 2024): e0302539. http://dx.doi.org/10.1371/journal.pone.0302539.
Texto completo da fonteLayne, Elliot, Erika N. Dort, Richard Hamelin, Yue Li e Mathieu Blanchette. "Supervised learning on phylogenetically distributed data". Bioinformatics 36, Supplement_2 (dezembro de 2020): i895—i902. http://dx.doi.org/10.1093/bioinformatics/btaa842.
Texto completo da fonteShahrivari, Farzad, e Nikola Zlatanov. "On Supervised Classification of Feature Vectors with Independent and Non-Identically Distributed Elements". Entropy 23, n.º 8 (13 de agosto de 2021): 1045. http://dx.doi.org/10.3390/e23081045.
Texto completo da fonteLv, Yankai, Haiyan Ding, Hao Wu, Yiji Zhao e Lei Zhang. "FedRDS: Federated Learning on Non-IID Data via Regularization and Data Sharing". Applied Sciences 13, n.º 23 (4 de dezembro de 2023): 12962. http://dx.doi.org/10.3390/app132312962.
Texto completo da fonteZhang, Xufei, e Yiqing Shen. "Non-IID federated learning with Mixed-Data Calibration". Applied and Computational Engineering 45, n.º 1 (15 de março de 2024): 168–78. http://dx.doi.org/10.54254/2755-2721/45/20241048.
Texto completo da fonteAlotaibi, Basmah, Fakhri Alam Khan e Sajjad Mahmood. "Communication Efficiency and Non-Independent and Identically Distributed Data Challenge in Federated Learning: A Systematic Mapping Study". Applied Sciences 14, n.º 7 (24 de março de 2024): 2720. http://dx.doi.org/10.3390/app14072720.
Texto completo da fonteWang, Zhao, Yifan Hu, Shiyang Yan, Zhihao Wang, Ruijie Hou e Chao Wu. "Efficient Ring-Topology Decentralized Federated Learning with Deep Generative Models for Medical Data in eHealthcare Systems". Electronics 11, n.º 10 (12 de maio de 2022): 1548. http://dx.doi.org/10.3390/electronics11101548.
Texto completo da fonteAggarwal, Meenakshi, Vikas Khullar, Nitin Goyal, Abdullah Alammari, Marwan Ali Albahar e Aman Singh. "Lightweight Federated Learning for Rice Leaf Disease Classification Using Non Independent and Identically Distributed Images". Sustainability 15, n.º 16 (9 de agosto de 2023): 12149. http://dx.doi.org/10.3390/su151612149.
Texto completo da fonteNiang, Aladji Babacar, Gane Samb Lo, Cherif Mamadou Traoré e Amadou Ball. "\(\ell^{\infty}\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences". Afrika Statistika 17, n.º 1 (1 de janeiro de 2022): 3125–43. http://dx.doi.org/10.16929/as/2022.3125.198.
Texto completo da fonteNiang, Aladji Babacar, Gane Samb Lo, Cherif Mamadou Moctar Traoré e Amadou Ball. "\(\ell^{\infty}\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences". Afrika Statistika 17, n.º 1 (1 de janeiro de 2022): 3125–43. http://dx.doi.org/10.16929/as/3125.3115.198.
Texto completo da fonteWu, Xia, Lei Xu e Liehuang Zhu. "Local Differential Privacy-Based Federated Learning under Personalized Settings". Applied Sciences 13, n.º 7 (24 de março de 2023): 4168. http://dx.doi.org/10.3390/app13074168.
Texto completo da fonteBejenar, Iuliana, Lavinia Ferariu, Carlos Pascal e Constantin-Florin Caruntu. "Aggregation Methods Based on Quality Model Assessment for Federated Learning Applications: Overview and Comparative Analysis". Mathematics 11, n.º 22 (10 de novembro de 2023): 4610. http://dx.doi.org/10.3390/math11224610.
Texto completo da fonteTayyeh, Huda Kadhim, e Ahmed Sabah Ahmed AL-Jumaili. "Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning". Computers 13, n.º 11 (24 de outubro de 2024): 277. http://dx.doi.org/10.3390/computers13110277.
Texto completo da fonteLiu, Ying, Zhiqiang Wang, Shufang Pang e Lei Ju. "Distributed Malicious Traffic Detection". Electronics 13, n.º 23 (28 de novembro de 2024): 4720. http://dx.doi.org/10.3390/electronics13234720.
Texto completo da fonteLeroy, Fanny, Jean-Yves Dauxois e Pascale Tubert-Bitter. "On the Parametric Maximum Likelihood Estimator for Independent but Non-identically Distributed Observations with Application to Truncated Data". Journal of Statistical Theory and Applications 15, n.º 1 (2016): 96. http://dx.doi.org/10.2991/jsta.2016.15.1.8.
Texto completo da fonteDIB, ABDESSAMAD, MOHAMED MEHDI HAMRI e ABBES RABHI. "ASYMPTOTIC NORMALITY SINGLE FUNCTIONAL INDEX QUANTILE REGRESSION UNDER RANDOMLY CENSORED DATA". Journal of Science and Arts 22, n.º 4 (30 de dezembro de 2022): 845–64. http://dx.doi.org/10.46939/j.sci.arts-22.4-a07.
Texto completo da fonteJahani, Khalil, Behzad Moshiri e Babak Hossein Khalaj. "A Survey on Data Distribution Challenges and Solutions in Vertical and Horizontal Federated Learning". Journal of Artificial Intelligence, Applications, and Innovations 1, n.º 2 (2024): 55–71. https://doi.org/10.61838/jaiai.1.2.5.
Texto completo da fonteZhang, Jianfei, e Zhongxin Li. "A Clustered Federated Learning Method of User Behavior Analysis Based on Non-IID Data". Electronics 12, n.º 7 (31 de março de 2023): 1660. http://dx.doi.org/10.3390/electronics12071660.
Texto completo da fonteChen, Runzi, Shuliang Zhao e Zhenzhen Tian. "A Multiscale Clustering Approach for Non-IID Nominal Data". Computational Intelligence and Neuroscience 2021 (11 de outubro de 2021): 1–10. http://dx.doi.org/10.1155/2021/8993543.
Texto completo da fonteYan, Jiaxing, Yan Li, Sifan Yin, Xin Kang, Jiachen Wang, Hao Zhang e Bin Hu. "An Efficient Greedy Hierarchical Federated Learning Training Method Based on Trusted Execution Environments". Electronics 13, n.º 17 (6 de setembro de 2024): 3548. http://dx.doi.org/10.3390/electronics13173548.
Texto completo da fonteGao, Huiguo, Mengyuan Lee, Guanding Yu e Zhaolin Zhou. "A Graph Neural Network Based Decentralized Learning Scheme". Sensors 22, n.º 3 (28 de janeiro de 2022): 1030. http://dx.doi.org/10.3390/s22031030.
Texto completo da fonteZhou, Yuwen, Yuhan Hu, Jing Sun, Rui He e Wenjie Kang. "A Semi-Federated Active Learning Framework for Unlabeled Online Network Data". Mathematics 11, n.º 8 (21 de abril de 2023): 1972. http://dx.doi.org/10.3390/math11081972.
Texto completo da fonteWang, Jinru, Zijuan Geng e Fengfeng Jin. "Optimal Wavelet Estimation of Density Derivatives for Size-Biased Data". Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/512634.
Texto completo da fonteEfthymiadis, Filippos, Aristeidis Karras, Christos Karras e Spyros Sioutas. "Advanced Optimization Techniques for Federated Learning on Non-IID Data". Future Internet 16, n.º 10 (13 de outubro de 2024): 370. http://dx.doi.org/10.3390/fi16100370.
Texto completo da fonteSeol, Mihye, e Taejoon Kim. "Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data". Sensors 23, n.º 3 (19 de janeiro de 2023): 1152. http://dx.doi.org/10.3390/s23031152.
Texto completo da fonteLee, Suchul. "Distributed Detection of Malicious Android Apps While Preserving Privacy Using Federated Learning". Sensors 23, n.º 4 (15 de fevereiro de 2023): 2198. http://dx.doi.org/10.3390/s23042198.
Texto completo da fonteZhao, Puning, Fei Yu e Zhiguo Wan. "A Huber Loss Minimization Approach to Byzantine Robust Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 19 (24 de março de 2024): 21806–14. http://dx.doi.org/10.1609/aaai.v38i19.30181.
Texto completo da fonteValente Neto, Ernesto, Solon Peixoto e Júlio César Anjos. "EnBaSe: Enhancing Image Classification in IoT Scenarios through Entropy-Based Selection of Non-IID Data". Learning and Nonlinear Models 23, n.º 1 (28 de fevereiro de 2025): 49–66. https://doi.org/10.21528/lnlm-vol23-no1-art4.
Texto completo da fonteFirdaus, Muhammad, Siwan Noh, Zhuohao Qian, Harashta Tatimma Larasati e Kyung-Hyune Rhee. "Personalized federated learning for heterogeneous data: A distributed edge clustering approach". Mathematical Biosciences and Engineering 20, n.º 6 (2023): 10725–40. http://dx.doi.org/10.3934/mbe.2023475.
Texto completo da fonteChu, Patrick K. K. "Study on the Non-Random and Chaotic Behavior of Chinese Equities Market". Review of Pacific Basin Financial Markets and Policies 06, n.º 02 (junho de 2003): 199–222. http://dx.doi.org/10.1142/s0219091503001055.
Texto completo da fonteKnight, John L., e Stephen E. Satchell. "The Cumulant Generating Function Estimation Method". Econometric Theory 13, n.º 2 (abril de 1997): 170–84. http://dx.doi.org/10.1017/s0266466600005715.
Texto completo da fonteGao, Yuan. "Federated learning: Impact of different algorithms and models on prediction results based on fashion-MNIST data set". Applied and Computational Engineering 86, n.º 1 (31 de julho de 2024): 210–18. http://dx.doi.org/10.54254/2755-2721/86/20241594.
Texto completo da fonteChoi, Jai Won, Balgobin Nandram e Boseung Choi. "Combining Correlated P-values From Primary Data Analyses". International Journal of Statistics and Probability 11, n.º 6 (20 de outubro de 2022): 12. http://dx.doi.org/10.5539/ijsp.v11n6p12.
Texto completo da fonteTan, Qingjie, Bin Wang, Hongfeng Yu, Shuhui Wu, Yaguan Qian e Yuanhong Tao. "DP-FEDAW: FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY IN NON-IID DATA". International Journal of Engineering Technologies and Management Research 10, n.º 5 (20 de maio de 2023): 34–49. http://dx.doi.org/10.29121/ijetmr.v10.i5.2023.1328.
Texto completo da fonteShan, Ang, e Fengkai Yang. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm". Mathematics 9, n.º 6 (10 de março de 2021): 590. http://dx.doi.org/10.3390/math9060590.
Texto completo da fonteAgrawal, Shaashwat, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy Gadekallu e Quoc-Viet Pham. "Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning". Computational Intelligence and Neuroscience 2021 (18 de novembro de 2021): 1–10. http://dx.doi.org/10.1155/2021/7156420.
Texto completo da fonteZhang, You, Jin Wang, Liang-Chih Yu, Dan Xu e Xuejie Zhang. "Multi-Attribute Multi-Grained Adaptation of Pre-Trained Language Models for Text Understanding from Bayesian Perspective". Proceedings of the AAAI Conference on Artificial Intelligence 39, n.º 24 (11 de abril de 2025): 25967–75. https://doi.org/10.1609/aaai.v39i24.34791.
Texto completo da fonteZhang, Kainan, Zhipeng Cai e Daehee Seo. "Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data". Wireless Communications and Mobile Computing 2023 (3 de fevereiro de 2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Texto completo da fonteHu, Cheng, Scarlett Chen e Zhe Wu. "Economic Model Predictive Control of Nonlinear Systems Using Online Learning of Neural Networks". Processes 11, n.º 2 (20 de janeiro de 2023): 342. http://dx.doi.org/10.3390/pr11020342.
Texto completo da fonteZhou, Yueying, Gaoxiang Duan, Tianchen Qiu, Lin Zhang, Li Tian, Xiaoying Zheng e Yongxin Zhu. "Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge". Electronics 13, n.º 9 (1 de maio de 2024): 1738. http://dx.doi.org/10.3390/electronics13091738.
Texto completo da fonteZhao, Bo, Peng Sun, Tao Wang e Keyu Jiang. "FedInv: Byzantine-Robust Federated Learning by Inversing Local Model Updates". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 8 (28 de junho de 2022): 9171–79. http://dx.doi.org/10.1609/aaai.v36i8.20903.
Texto completo da fonteYang, Dezhi, Xintong He, Jun Wang, Guoxian Yu, Carlotta Domeniconi e Jinglin Zhang. "Federated Causality Learning with Explainable Adaptive Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de março de 2024): 16308–15. http://dx.doi.org/10.1609/aaai.v38i15.29566.
Texto completo da fonteTursunboev, Jamshid, Yong-Sung Kang, Sung-Bum Huh, Dong-Woo Lim, Jae-Mo Kang e Heechul Jung. "Hierarchical Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks". Applied Sciences 12, n.º 2 (11 de janeiro de 2022): 670. http://dx.doi.org/10.3390/app12020670.
Texto completo da fonteLee, Yi-Chen, Wei-Che Chien e Yao-Chung Chang. "FedDB: A Federated Learning Approach Using DBSCAN for DDoS Attack Detection". Applied Sciences 14, n.º 22 (7 de novembro de 2024): 10236. http://dx.doi.org/10.3390/app142210236.
Texto completo da fonteSharma, Shagun, Kalpna Guleria, Ayush Dogra, Deepali Gupta, Sapna Juneja, Swati Kumari e Ali Nauman. "A privacy-preserved horizontal federated learning for malignant glioma tumour detection using distributed data-silos". PLOS ONE 20, n.º 2 (11 de fevereiro de 2025): e0316543. https://doi.org/10.1371/journal.pone.0316543.
Texto completo da fonte