Siga este link para ver outros tipos de publicações sobre o tema: NUCLEAR MAGNETIC MOMENTS.

Artigos de revistas sobre o tema "NUCLEAR MAGNETIC MOMENTS"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "NUCLEAR MAGNETIC MOMENTS".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Speidel, K. H., O. Kenn e F. Nowacki. "Magnetic moments and nuclear structure". Progress in Particle and Nuclear Physics 49, n.º 1 (janeiro de 2002): 91–154. http://dx.doi.org/10.1016/s0146-6410(02)00144-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ohya, S., S. Suzuki, K. Nishimura e N. Mutsuro. "The nuclear magnetic moments of184,185Ir and the quadrupole moment of185Ir". Journal of Physics G: Nuclear Physics 14, n.º 3 (março de 1988): 365–71. http://dx.doi.org/10.1088/0305-4616/14/3/012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ram, K., e K. K. Sharma. "Enhanced nuclear magnetic moments in HoF3". Journal of Physics C: Solid State Physics 18, n.º 3 (30 de janeiro de 1985): 619–24. http://dx.doi.org/10.1088/0022-3719/18/3/012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wei, J., J. Li e J. Meng. "Relativistic Descriptions of Nuclear Magnetic Moments". Progress of Theoretical Physics Supplement 196 (16 de maio de 2013): 400–406. http://dx.doi.org/10.1143/ptps.196.400.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ichii, S., W. Bentz e A. Arima. "Isoscalar currents and nuclear magnetic moments". Nuclear Physics A 464, n.º 4 (março de 1987): 575–602. http://dx.doi.org/10.1016/0375-9474(87)90368-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ohtsubo, T., D. J. Cho, Y. Yanagihashi, S. Ohya e S. Muto. "Measurement of the nuclear magnetic moments ofNi57andFe59". Physical Review C 54, n.º 2 (1 de agosto de 1996): 554–58. http://dx.doi.org/10.1103/physrevc.54.554.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Antušek, Andrej, Karol Jackowski, Michał Jaszuński, Włodzimierz Makulski e Marcin Wilczek. "Nuclear magnetic dipole moments from NMR spectra". Chemical Physics Letters 411, n.º 1-3 (agosto de 2005): 111–16. http://dx.doi.org/10.1016/j.cplett.2005.06.022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Makulski, Włodzimierz. "Multinuclear Magnetic Resonance Study of Sodium Salts in Water Solutions". Magnetochemistry 5, n.º 4 (9 de dezembro de 2019): 68. http://dx.doi.org/10.3390/magnetochemistry5040068.

Texto completo da fonte
Resumo:
The small amounts of gaseous 3He dissolved in low concentrated water solutions of NaCl, NaNO3 and NaClO4 were prepared and examined by 3He-, 23Na-, 35Cl- and 15N-NMR spectroscopy. This experimental data, along with new theoretical shielding factors, was used to measure the 23Na nuclear magnetic moment against that of helium-3 μ(23Na) = +2.2174997(111) in nuclear magnetons. The standard relationship between NMR frequencies and nuclear magnetic moments of observed nuclei was used. The nuclear magnetic shielding factors of 23Na cation were verified against that of counter ions present in water solutions. Very good agreement between shielding constants σ(3He), σ(23Na+), σ(35Cl‒), σ(35ClO4‒), σ(15NO3‒) in water at infinite dilution and nuclear magnetic moments was observed for all magnetic nuclei. It can be used as a reference nucleus for calculating a few other magnetic moments of different nuclei by the NMR method. An analysis of new and former μ(23Na) experimental data obtained by the atomic beam magnetic resonance method (ABMR) and other NMR measurements shows good replicability of all specified results. The composition of sodium water complexes was discussed in terms of chemical equilibria and NMR shielding scale.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Brix, Peter. "Fifty Years of Nuclear Quadrupole Moments". Zeitschrift für Naturforschung A 41, n.º 1-2 (1 de fevereiro de 1986): 2–14. http://dx.doi.org/10.1515/zna-1986-1-203.

Texto completo da fonte
Resumo:
On March 2, 1935 Hermann Schiller and Theodor Schmidt reported the first experimental evidence of non-spherical nuclei. From careful hyperfine structure studies of several Eu I-lines, they had shown that the hyperfine components of 151Eu and 153Eu did not follow the Lande interval rule exactly. Since the deviations were larger for 153Eu with the smaller magnetic moment, level perturbations were ruled out. This led to the conclusion of nuclear quadrupole moments. The theory was published June 1, 1935 by Hendrik B. G. Casimir. Nuclear deformations are playing a decisive role in modern nuclear structure physics. For solid state physics, spectroscopic quadrupole moments are very useful, since they probe the electric field gradient at the nuclei.This review presents the discovery of 1935 in historical context: 1. Early measurements of nuclear radii. 2. Discovery of nuclear quadrupole moments. 3. Spectroscopic quadrupole moments (absolute measurements; relative hyperfine data, europium revisited). 4. Intrinsic quadrupole moments (discovery from isotope shifts; present status, samarium revisited). 5. Charge distribution of deformed nuclei.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Trhlík, Milos, Milos Rotter, Nathal Severijns e Ludo Vanneste. "Nuclear Orientation as a Tool for Investigation of Magnetic Multilayers with Rare Earths". Australian Journal of Physics 51, n.º 2 (1998): 255. http://dx.doi.org/10.1071/p97048.

Texto completo da fonte
Resumo:
Low-temperature nuclear orientation (NO) is presented as a useful tool to study the behaviour of rare earth (RE) ionic magnetic moments in magnetic multilayers. NO is shown to give rather direct information about the direction of RE ionic moments in such low-dimensional systems. In particular, the perpendicular magnetic anisotropy (PMA) can be directly monitored using RE atoms as probes. The potential of NO is demonstrated by our recent results, which concern the Fe/Tb multilayers. We have studied NO of 160Tb in Fe(40 Å)/Tb(x Å) (x = 5–30) and found that the Tb magnetic moments show PMA at low external magnetic fields (Bext). PMA of the Tb spins is found to be more pronounced when the Tb layer is thinner. It was found that Bext has a complicated influence on the Tb magnetic moment misalignment, which is connected with an interplay between PMA, the exchange interactions and the shape and magnetic crystalline anisotropy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

WONG, HENRY T., e HAU-BIN LI. "NEUTRINO MAGNETIC MOMENTS". Modern Physics Letters A 20, n.º 15 (20 de maio de 2005): 1103–17. http://dx.doi.org/10.1142/s0217732305017482.

Texto completo da fonte
Resumo:
Finite neutrino magnetic moments are consequences of nonzero neutrino masses. The particle physics aspects of the neutrino electromagnetic interactions are reviewed. The astrophysical bounds and the results from recent direct experiments are reviewed, with emphasis on the reactor neutrino experiments. Future projects and prospects are surveyed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Koizumi, M., J. Goto, S. Matsuki e S. Nakamura. "Dynamic nuclear self-polarization for measurements of nuclear magnetic moments". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 317 (dezembro de 2013): 689–92. http://dx.doi.org/10.1016/j.nimb.2013.07.042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

König, C., B. Hinfurtner, E. Hagn, E. Zech e R. Eder. "Measurements of nuclear magnetic moments and electric quadrupole moments of Lu isotopes". Physical Review C 54, n.º 3 (1 de setembro de 1996): 1027–37. http://dx.doi.org/10.1103/physrevc.54.1027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Eder, R., E. Hagn e E. Zech. "Nuclear magnetic moments of 44.3 sAgm107and 39.8 sAgm109". Physical Review C 31, n.º 1 (1 de janeiro de 1985): 190–96. http://dx.doi.org/10.1103/physrevc.31.190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

GÓŹDŹ, MAREK, e WIESŁAW A. KAMIŃSKI. "0ν2β NUCLEAR MATRIX ELEMENTS AND NEUTRINO MAGNETIC MOMENTS". International Journal of Modern Physics E 19, n.º 04 (abril de 2010): 692–98. http://dx.doi.org/10.1142/s0218301310015114.

Texto completo da fonte
Resumo:
We compare different methods of obtaining the neutrinoless double beta decay nuclear matrix elements (NME). On the example of 76 Ge we use the NME to calculate the Majorana neutrino transition magnetic moments, generated through particle–sparticle R-parity violating loop diagrams whithin the minimal supersymmetric standard model.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

LI, Jian. "Nuclear magnetic moments in covariant density functional theory". SCIENTIA SINICA Physica, Mechanica & Astronomica 46, n.º 1 (15 de dezembro de 2015): 012008. http://dx.doi.org/10.1360/sspma2015-00363.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bawin, Michel, e George L. Strobel. "Equivalent local Dirac potentials and nuclear magnetic moments". Physical Review C 33, n.º 2 (1 de fevereiro de 1986): 732–33. http://dx.doi.org/10.1103/physrevc.33.732.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Gustavsson, Martin G. H., e Ann-Marie Mårtensson-Pendrill. "Need for remeasurements of nuclear magnetic dipole moments". Physical Review A 58, n.º 5 (1 de novembro de 1998): 3611–18. http://dx.doi.org/10.1103/physreva.58.3611.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Chiapparini, Marcelo, e Aníbal O. Gattone. "Medium induced magnetization current and nuclear magnetic moments". Physics Letters B 224, n.º 3 (junho de 1989): 243–48. http://dx.doi.org/10.1016/0370-2693(89)91223-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Marciano, William J. "Anomalous Magnetic Moments". International Journal of Modern Physics A 19, supp01 (fevereiro de 2004): 77–87. http://dx.doi.org/10.1142/s0217751x04018609.

Texto completo da fonte
Resumo:
The Dirac equation explained why the gyromagnetic ratio, g factor, is equal to 2 for fundamental spin [Formula: see text] particles. Quantum loop effects were subsequently shown to induce a small shift or anomaly, a≡(g-2)/2. Anomalous magnetic moment effects have been calculated and measured with extraordinary precision for the electron and muon. Here, the Standard Model's predictions for al=(gl-2)/2, l=e, μ are described and compared with experimental values. Implications for probing "New Physics" effects are also discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Werbelow, Larry G. "Nuclear magnetic relaxation for coupled spins of oppositely signed magnetic moments". Journal of the Chemical Society, Faraday Transactions 2 83, n.º 6 (1987): 897. http://dx.doi.org/10.1039/f29878300897.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

GÓŹDŹ, MAREK, WIESŁAW A. KAMIŃSKI e FEDOR ŠIMKOVIC. "MAJORANA NEUTRINO MAGNETIC MOMENTS". International Journal of Modern Physics E 15, n.º 02 (março de 2006): 441–45. http://dx.doi.org/10.1142/s0218301306004338.

Texto completo da fonte
Resumo:
The presence of trilinear R-parity violating interactions in the MSSM lagrangian leads to existence of quark–squark and lepton–slepton loops which generate mass of the neutrino. By introducing interaction with an external photon the magnetic moment is obtained. We derive bounds on that quantity being around one order of magnitude stronger than those present in the literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Kotulla, M. "Magnetic moments of excited baryons". Progress in Particle and Nuclear Physics 61, n.º 1 (julho de 2008): 147–52. http://dx.doi.org/10.1016/j.ppnp.2007.12.048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Bijker, R., M. M. Giannini e E. Santopinto. "Magnetic moments of antidecuplet pentaquarks". Physics Letters B 595, n.º 1-4 (agosto de 2004): 260–68. http://dx.doi.org/10.1016/j.physletb.2004.05.062.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Avotina, M. P., e T. I. Kracíková. "Relation between electric quadrupole and magnetic dipole nuclear moments". Hyperfine Interactions 34, n.º 1-4 (março de 1987): 87–89. http://dx.doi.org/10.1007/bf02072685.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Stone, N. J., J. Rikovska, V. R. Green, T. L. Shaw, K. S. Krane, P. M. Walker e I. S. Grant. "Iodine magnetic moments measured by on-line nuclear orientation". Hyperfine Interactions 34, n.º 1-4 (março de 1987): 115–17. http://dx.doi.org/10.1007/bf02072689.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Kat, Masayuki, Wolfgang Bentz, Kiyotaka Shimizu e Akito Arima. "Quark shell model of nuclei and nuclear magnetic moments". Physical Review C 42, n.º 6 (1 de dezembro de 1990): 2672–79. http://dx.doi.org/10.1103/physrevc.42.2672.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Arnold, E., W. Borchers, M. Carre, H. T. Duong, P. Juncar, J. Lerme, S. Liberman et al. "Direct measurement of nuclear magnetic moments of radium isotopes". Physical Review Letters 59, n.º 7 (17 de agosto de 1987): 771–74. http://dx.doi.org/10.1103/physrevlett.59.771.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Dmitriev, V. F., I. B. Khriplovich e V. B. Telitsin. "Nuclear magnetic quadrupole moments in the single-particle approximation". Physical Review C 50, n.º 5 (1 de novembro de 1994): 2358–61. http://dx.doi.org/10.1103/physrevc.50.2358.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Speidel, K. H. "Measurements of nuclear magnetic moments by transient field techniques". Hyperfine Interactions 25, n.º 1-4 (novembro de 1985): 477–90. http://dx.doi.org/10.1007/bf02354662.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Stone, N. J. "Table of nuclear magnetic dipole and electric quadrupole moments". Atomic Data and Nuclear Data Tables 90, n.º 1 (maio de 2005): 75–176. http://dx.doi.org/10.1016/j.adt.2005.04.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Arima, A., K. Yazaki e H. Bohr. "A quark shell model calculation of nuclear magnetic moments". Physics Letters B 183, n.º 2 (janeiro de 1987): 131–34. http://dx.doi.org/10.1016/0370-2693(87)90425-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Zhao, EnGuang. "Recent progress in theoretical studies of nuclear magnetic moments". Chinese Science Bulletin 57, n.º 34 (20 de novembro de 2012): 4394–99. http://dx.doi.org/10.1007/s11434-012-5491-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ito, Hiroshi, e Leonard S. Kisslinger. "Nuclear magnetic moments in the hybrid quark-hadron model". Annals of Physics 174, n.º 1 (fevereiro de 1987): 169–201. http://dx.doi.org/10.1016/0003-4916(87)90083-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Neyens, Gerda. "Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei". Reports on Progress in Physics 66, n.º 4 (25 de março de 2003): 633–89. http://dx.doi.org/10.1088/0034-4885/66/4/205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Neyens, Gerda. "Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei". Reports on Progress in Physics 66, n.º 7 (25 de junho de 2003): 1251. http://dx.doi.org/10.1088/0034-4885/66/7/501.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Koh, Meng-Hock, Nurhafiza Mohamad Nor, Nor-Anita Rezle, Kai-Wen Kelvin Lee, Philippe Quentin, Norehan Mohd Nor e Ludovic Bonneau. "Skyrme-Hartree-Fock approach for description of static nuclear properties of well-deformed nuclei". Malaysian Journal of Fundamental and Applied Sciences 16, n.º 1 (2 de fevereiro de 2020): 34–37. http://dx.doi.org/10.11113/mjfas.v16n1.1626.

Texto completo da fonte
Resumo:
Nuclear structure data plays an important role in nuclear physics studies and applications such as nuclear power generation. This article presents evaluations of a mean-field approach to describe two nuclear structure quantities namely the electric and magnetic moments. The Hartree-Fock-plus-pairing approach was employed with pairing correlations treated within the Bardeen-Cooper-Schrieffer (BCS) framework. The Skyrme SIII parametrization and seniority force are chosen to approximate the effective nucleon-nucleon and pairing interactions, respectively. Calculated results show that the self-consistent blocking procedure which takes into account time-reversal symmetry breaking is important to reproduce experimental magnetic moment
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Ueno, H., D. Kameda, G. Kijima, K. Asahi, A. Yoshimi, H. Miyoshi, K. Shimada et al. "Magnetic moments of 3013Al17 and 3213Al19". Physics Letters B 615, n.º 3-4 (junho de 2005): 186–92. http://dx.doi.org/10.1016/j.physletb.2005.04.037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Aw, M., M. K. Banerjee e H. Forkel. "Direct instantons and nucleon magnetic moments". Physics Letters B 454, n.º 1-2 (maio de 1999): 147–54. http://dx.doi.org/10.1016/s0370-2693(99)00358-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Kim, H. Ch, Gh S. Yang, M. Praszałowicz e K. Goeke. "Magnetic moments of exotic pentaquark baryons". Nuclear Physics A 755 (junho de 2005): 419–22. http://dx.doi.org/10.1016/j.nuclphysa.2005.03.133.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Björnberg, M. "Magnetic moments of heavy flavour pentaquarks". Nuclear Physics A 570, n.º 3-4 (abril de 1994): 625–36. http://dx.doi.org/10.1016/0375-9474(94)90076-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Mukhamedjanov, T. N., O. P. Sushkov e J. M. Cadogan. "NMR Manifestations of Nuclear Anapole Moments". Journal of Superconductivity and Novel Magnetism 20, n.º 2 (11 de outubro de 2006): 193–96. http://dx.doi.org/10.1007/s10948-006-0113-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Barut, A. O., e M. Božić. "Passage of relativistic magnetic dipole moments through magnetic fields". Zeitschrift für Physik A Atomic Nuclei 330, n.º 3 (setembro de 1988): 319–30. http://dx.doi.org/10.1007/bf01294877.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ohya, S., T. Yamazaki, T. Harasawa, M. Katsurayama, N. Mutsuro, S. Muto e K. Heiguchi. "Nuclear magnetic moments of the ground states ofI124,I126, andI130". Physical Review C 45, n.º 1 (1 de janeiro de 1992): 162–65. http://dx.doi.org/10.1103/physrevc.45.162.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Talmi, Igal. "Nuclear magnetic moments—50 years of the Arima–Horie paper". Journal of Physics: Conference Series 20 (1 de janeiro de 2005): 28–34. http://dx.doi.org/10.1088/1742-6596/20/1/005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

FAESSLER, AMAND, A. BUCHMANN e Y. YAMAUCHI. "THE QUARK MODEL, DEUTERON FORM FACTORS AND NUCLEAR MAGNETIC MOMENTS". International Journal of Modern Physics E 02, n.º 01 (março de 1993): 39–185. http://dx.doi.org/10.1142/s0218301393000030.

Texto completo da fonte
Resumo:
The study of the deuteron electromagnetic form factors based on the quark cluster model is reviewed. The deuteron wave function is derived from a microscopic quark Hamiltonian with the help of the Resonating Group Method. One-pion and one-gluon exchange potentials are included in addition to a quadratic confinement potential. The photon is coupled directly to the quarks. Aside from the one-body impulse current, pion and gluon exchange currents are included on the quark level. Due to the Pauli principle on the quark level, new electromagnetic currents arise which are not present on the nucleon level. These currents, called quark exchange currents, describe processes in which a photon couples to a quark or a pair of quarks interacting via gluon or pion exchange and which are accompanied by a simultaneous quark interchange between the two threequark clusters (nucleons). They are small for low momentum transfers but appreciably influence the electromagnetic structure of the deuteron beyond a momentum transfer of q=5 fm−1. The discussion is extended to the magnetic moments of 15N, 17O and 39K by introducing the quark exchange currents as effective operators on the nucleon level. The quark exchange currents written in terms of nonlocal and spin-isospin dependent nuclear operators are effective only at short distances. They are evaluated with shell-model (harmonic oscillator) wave functions including the (short-range) Brueckner correlations. The Bethe-Goldstone equation is solved with our effective NN potential, which is derived from a microscopic quark Hamiltonian. The quark exchange currents shift the isovector magnetic moment of 39K by −20% from its Schmidt value.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Arima, Akito. "A short history of nuclear magnetic moments and GT transitions". Science China Physics, Mechanics and Astronomy 54, n.º 2 (5 de janeiro de 2011): 188–93. http://dx.doi.org/10.1007/s11433-010-4224-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

KISELEV, J. F., A. F. PRUDKOGLYAD, A. S. SHUMOVSKY e V. I. YUKALOV. "DISCOVERY OF DICKE SUPERRADIATION BY SYSTEM OF NUCLEAR MAGNETIC MOMENTS". Modern Physics Letters B 01, n.º 11n12 (fevereiro de 1988): 409–16. http://dx.doi.org/10.1142/s021798498800148x.

Texto completo da fonte
Resumo:
Spontaneous generation of the Dicke superradiation (SR) state has been found in the system of inversely polarised proton spins with “frozen” polarisation. SR is observed at the moment when the Larmor frequency crosses the resonance frequency of the passive oscillatory circuit. SR arises from incoherent maser generation of spins. The frequency of a SR generator can be retuned from several hundreds of kilohertz to hundreds of megahertz at very low temperatures. Dependence of incoherent and coherent radiation on the initial polarisation has been investigated. A radio frequency analogue of the optical SR laser is shown to be possible both for weak-amplifying and for strong-amplifying active media, depending on the factor of filling and polarisation of nuclei. SR-reverse of negative polarisation is observed in the latter case.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Speidel, K. H. "In-beam measurements of magnetic moments of excited nuclear states". Hyperfine Interactions 22, n.º 1-4 (março de 1985): 305–16. http://dx.doi.org/10.1007/bf02064004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Hill, John C., F. K. Wohn, A. Wolf, Z. Berant, R. L. Gill e H. Kruse. "Study of magnetic moments of nuclear excited states at Tristan". Hyperfine Interactions 22, n.º 1-4 (março de 1985): 449–57. http://dx.doi.org/10.1007/bf02064016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia