Literatura científica selecionada sobre o tema "Online learning methods"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Online learning methods".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Online learning methods"
Tarasenko, M. "ONLINE LEARNING: INTERACTIVE METHODS". Pedagogy of the formation of a creative person in higher and secondary schools 2, n.º 77 (2021): 49–53. http://dx.doi.org/10.32840/1992-5786.2021.77-2.9.
Texto completo da fonteTekin, Cem, e Mingyan Liu. "Online Learning Methods for Networking". Foundations and Trends® in Networking 8, n.º 4 (2013): 281–409. http://dx.doi.org/10.1561/1300000050.
Texto completo da fonteSalmons, Janet. "Case methods for online learning". eLearn 2003, n.º 6 (junho de 2003): 2. http://dx.doi.org/10.1145/863928.863932.
Texto completo da fontePRASETYA, Prita, e Sekar Wulan PRASETYANINGTYAS. "LEARNING STATISTICAL METHODES WITH ONLINE ONLINE COURSE". ICCD 3, n.º 1 (27 de outubro de 2021): 312–15. http://dx.doi.org/10.33068/iccd.vol3.iss1.368.
Texto completo da fonteVilkhovchenko, Nadiia P. "ESP distance learning methods At technical universities". Bulletin of Alfred Nobel University Series "Pedagogy and Psychology» 1, n.º 23 (junho de 2022): 116–23. http://dx.doi.org/10.32342/2522-4115-2022-1-23-14.
Texto completo da fonteRini, Hesty Prima, e Dewi Khrisna Sawitri. "Effectiveness of Online Learning: The Learning Methods and Media". Ilomata International Journal of Social Science 3, n.º 1 (10 de fevereiro de 2022): 330–39. http://dx.doi.org/10.52728/ijss.v3i1.389.
Texto completo da fonteTîrziu, Andreea-Maria, e Cătălin I. Vrabie. "NET Generation. Thinking outside the box by using online learning methods". New Trends and Issues Proceedings on Humanities and Social Sciences 2, n.º 7 (27 de janeiro de 2016): 41–47. http://dx.doi.org/10.18844/gjhss.v2i7.1178.
Texto completo da fonteSampe, Maria Zefanya, e Syafrudi Syafrudi. "ONLINE MATHEMATICS LEARNING STRATEGY APPROACH: TEACHING METHODS AND LEARNING ASSESSMENT". Jurnal Pendidikan Matematika (JUPITEK) 7, n.º 1 (7 de julho de 2024): 42–55. http://dx.doi.org/10.30598/jupitekvol7iss1pp42-55.
Texto completo da fonteLoi, Chek Kim, Jason Miin Hwa Lim, Norazah Mohd Suki e Hock Ann Lee. "Exploring University Students’ Online Learning Readiness: A Mixed Methods Study of Forced Online Learning". Journal of Language and Education 10, n.º 1 (30 de março de 2024): 49–67. http://dx.doi.org/10.17323/jle.2024.16016.
Texto completo da fonteNF, Jhoanita, e Siti Khadijah. "PARENTS’ PERCEPTIONS OF ONLINE LEARNING METHODS: A QUANTITATIVE STUDY". Makna: Jurnal Kajian Komunikasi, Bahasa, dan Budaya 10, n.º 1 (9 de março de 2022): 21–30. http://dx.doi.org/10.33558/makna.v10i1.3242.
Texto completo da fonteTeses / dissertações sobre o assunto "Online learning methods"
Qin, Lei. "Online machine learning methods for visual tracking". Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0017/document.
Texto completo da fonteWe study the challenging problem of tracking an arbitrary object in video sequences with no prior knowledge other than a template annotated in the first frame. To tackle this problem, we build a robust tracking system consisting of the following components. First, for image region representation, we propose some improvements to the region covariance descriptor. Characteristics of a specific object are taken into consideration, before constructing the covariance descriptor. Second, for building the object appearance model, we propose to combine the merits of both generative models and discriminative models by organizing them in a detection cascade. Specifically, generative models are deployed in the early layers for eliminating most easy candidates whereas discriminative models are in the later layers for distinguishing the object from a few similar "distracters". The Partial Least Squares Discriminant Analysis (PLS-DA) is employed for building the discriminative object appearance models. Third, for updating the generative models, we propose a weakly-supervised model updating method, which is based on cluster analysis using the mean-shift gradient density estimation procedure. Fourth, a novel online PLS-DA learning algorithm is developed for incrementally updating the discriminative models. The final tracking system that integrates all these building blocks exhibits good robustness for most challenges in visual tracking. Comparing results conducted in challenging video sequences showed that the proposed tracking system performs favorably with respect to a number of state-of-the-art methods
Kovanovic, Vitomir. "Assessing cognitive presence using automated learning analytics methods". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28759.
Texto completo da fonteJohnson, Alicia Leinaala. "Exploration of Factors Affecting the Self-Efficacy of Asynchronous Online Learners: a Mixed Methods Study". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77518.
Texto completo da fontePh. D.
Conesa, Gago Agustin. "Methods to combine predictions from ensemble learning in multivariate forecasting". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103600.
Texto completo da fonteHäglund, Emil. "Estimating Prediction Intervals with Machine Learning and Monte Carlo Methods in Online Advertising". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282826.
Texto completo da fonteReklam på nätet är en komplex miljö. Mängden hemsidor, plattformar och format såväl som trenden med programmatiska reklamköp gör det svårt att utvärdera planerad reklam beträffande förväntad kostnad och värde. Den här rapporten använder maskininlärning för att prediktera kostnaden för tusen visningar (CPM), ett mått på annonseringseffektivitet, för ett planerat reklamköp. Random forest och neurala nätverksmodeller jämfördes med avseende på deras förmåga att producera punktskattningar och prediktionsintervall. För att skatta prediktionsintervall för neurala nätverk användes Monte Carlo dropout och skattning av datamängdens brusnivå. För random forest användes en Monte Carlo metod där ett stort antal modeller parametriseras med bootstrapping. Implementerade algoritmer jämfördes med 5x2cv test. Random forest och neural nätverksmodellerna producerade liknande precision för punktskattningar. För att erhålla giltiga prediktionsintervall avseende täckningssannolikhet för random forest krävdes det att parametrar justerades för att öka de enskilda beslutsträdens varians. Detta påverkade precisionen för punktskattningar negativt och prediktionsintervallen för random forest var mindre optimala än de som skattades av neurala nätverksalgoritmen. Denna skillnad i förmåga att skatta prediktionsintervall bekräftades statistiskt av 5x2cv testet.
Wright, Robert Demmon. "Students' Attitudes Towards Rapport-building Traits and Practices in Online Learning Environments". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177265/.
Texto completo da fonteLuca, Joseph. "Developing generic skills for tertiary students in an online learning environment". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2002. https://ro.ecu.edu.au/theses/713.
Texto completo da fonteCunningham, E. Ann. "Comparison of Student Success by Course Delivery Methods at an Eastern Tennessee Community College". Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2585.
Texto completo da fonteJoshi, Apoorva. "Trajectory-based methods to predict user churn in online health communities". Thesis, University of Iowa, 2018. https://ir.uiowa.edu/etd/6152.
Texto completo da fonteTunningley, Joan M. "Self-Regulated Learning and Reflective Journaling in an Online Interprofessional Course: A Mixed Methods Study". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511799445626182.
Texto completo da fonteLivros sobre o assunto "Online learning methods"
plc, Epic Group, ed. Methods: A practical guide to the methods used in online learning. Brighton: Epic Group, 1999.
Encontre o texto completo da fonteA, Fisher Cheryl, e Rietschel Matthew J, eds. Developing online learning environments in nursing education. 3a ed. New York, NY: Springer, 2014.
Encontre o texto completo da fonte1966-, Lindberg J. Ola, e Olofsson Anders D. 1973-, eds. Online learning communities and teacher professional development: Methods for improved education delivery. Hershey, PA: Information Science Reference, 2010.
Encontre o texto completo da fonte1966-, Lambropoulos Niki, e Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Encontre o texto completo da fonte1966-, Lambropoulos Niki, e Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Encontre o texto completo da fonte1966-, Lambropoulos Niki, e Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Encontre o texto completo da fonteLoke, Jennifer C. F. Critical discourse analysis of interprofessional online learning in health care education. Hauppauge, N.Y: Nova Science Publishers, 2011.
Encontre o texto completo da fonteConceição, Simone C. O., 1963-, ed. Motivating and retaining online students: Research-based strategies that work. San Francisco, CA: Jossey-Bass, a Wiley brand, 2014.
Encontre o texto completo da fonteTekin e Mingyan Liu. Online Learning Methods for Networking. Now Publishers, 2015.
Encontre o texto completo da fonteLOK, Johnny Ch. Advantages Comparision Between Classroom and Online Learning Methods. Independently Published, 2020.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Online learning methods"
Bartz-Beielstein, Thomas. "Special Requirements for Online Machine Learning Methods". In Online Machine Learning, 63–69. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7007-0_6.
Texto completo da fonteConceição, Simone C. O., e Susan M. Yelich Biniecki. "Closed and Open Online Discussion Forums". In Methods for Facilitating Adult Learning, 316–32. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-25.
Texto completo da fonteMittelman, Rachel J. "Overcoming Resistance to Teaching History Online and Methods of Engagement". In Teaching and Learning History Online, 7–14. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003258414-3.
Texto completo da fonteGunawardena, Charlotte Nirmalani, Nick V. Flor e Damien M. Sánchez. "Social Construction of Knowledge (SCK) Platforms, Scraping, and Methods". In Knowledge Co-Construction in Online Learning, 70–77. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-7.
Texto completo da fonteRay, Asmita, Vishal Goyal e Samir Kumar Bandyopadhyay. "Student Stress Detection in Online Learning During Outbreak". In Computational Methods in Psychiatry, 259–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_13.
Texto completo da fonteGunawardena, Charlotte Nirmalani, Nick V. Flor e Damien M. Sánchez. "Social Learning Analytic Methods (SLAM) for Examining Online Social Dynamics". In Knowledge Co-Construction in Online Learning, 57–69. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-6.
Texto completo da fontePark, Sunyoung, Boreum (Jenny) Ju e Shinhee Jeong. "Adopting Massive Open Online Courses (MOOCs) in Adult Learning Contexts". In Methods for Facilitating Adult Learning, 333–49. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-26.
Texto completo da fonteSiska, Jumiati, Meydia Afrina, Sudarwan Danim e Agus Susanta. "The Effectiveness of Demonstrative Learning Methods in Improving Students’ Learning Outcomes". In Online Conference of Education Research International (OCERI 2023), 319–25. Paris: Atlantis Press SARL, 2023. http://dx.doi.org/10.2991/978-2-38476-108-1_31.
Texto completo da fonteKatiyar, Kalpana, Hera Fatma e Simran Singh. "Student’s Stress Detection in Online Learning During the Outbreak". In Computational Methods in Psychiatry, 335–48. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_16.
Texto completo da fonteOiwa, Hidekazu, Shin Matsushima e Hiroshi Nakagawa. "Frequency-Aware Truncated Methods for Sparse Online Learning". In Machine Learning and Knowledge Discovery in Databases, 533–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23783-6_34.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Online learning methods"
Atia, Hend Abdelbakey, Magdy Aboul-Ela, Christina Albert Reyad e Nancy Awadallah Awad. "Online Payments Fraud Detection Using Machine Learning Techniques". In 2024 Intelligent Methods, Systems, and Applications (IMSA), 402–9. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652834.
Texto completo da fonteZhang, Hao, Liang Huang, Kai Zhao e Ryan McDonald. "Online Learning for Inexact Hypergraph Search". In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 908–13. Stroudsburg, PA, USA: Association for Computational Linguistics, 2013. http://dx.doi.org/10.18653/v1/d13-1093.
Texto completo da fonteJung, Hoin, e Xiaoqian Wang. "Fairness-Aware Online Positive-Unlabeled Learning". In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, 170–85. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-industry.14.
Texto completo da fonteShdefat, Ahmed Younes, Mennatallah Mohamed, Shahd Khaled, Farrah Hany, Hanaa Fathi e Diaa Salama AbdElminaam. "Comparative Analysis of Machine Learning Models in Online Payment Fraud Prediction". In 2024 Intelligent Methods, Systems, and Applications (IMSA), 243–50. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652861.
Texto completo da fonteDe Silva, D. I., e K. S. N. Athukorala. "Advancing Online Education: An Interactive Framework for Aligning Teaching Methods with Learning Styles". In 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–7. IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910891.
Texto completo da fonteHillier, Michael, Florian Wellmann, Boyan Brodaric, Eric de Kemp e Ernst Schetselaar. "MACHINE LEARNING METHODS FOR 3D GEOLOGICAL MODEL CONSTRUCTION". In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355922.
Texto completo da fonteSaenal, Selfiana, Syakhruni Syakhruni e Muh Kurniawan Adi Kusuma Wiharja. "Online Learning Methods for Learning Dance at School". In 1st World Conference on Social and Humanities Research (W-SHARE 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220402.056.
Texto completo da fonteLu, Lyujian, Hua Wang, Hua Wang, Yaoguo Li, Yaoguo Li, Thomas Monecke, Thomas Monecke, Hoon Seo e Hoon Seo. "PREDICTING 3D GEOSPATIAL DATA USING MACHINE LEARNING-BASED IMPUTATION METHODS". In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356905.
Texto completo da fonteLui, Timothy, Daniel Gregory, Sharon A. Cowling e Well-Shen Lee. "APPLYING MACHINE LEARNING METHODS TO PREDICT GEOLOGY USING SOIL SAMPLE GEOCHEMISTRY". In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-359454.
Texto completo da fonteLuo, Hongyin, Zhiyuan Liu, Huanbo Luan e Maosong Sun. "Online Learning of Interpretable Word Embeddings". In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1196.
Texto completo da fonteRelatórios de organizações sobre o assunto "Online learning methods"
Stanley, April Elisha, e Arienne McCracken. Methods for increasing student learning in an online undergraduate analysis of apparel and production course. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-353.
Texto completo da fonteYatsenko, Halyna, e Andriy Yatsenko. Використання креативних методів навчання під час викладання дисциплін «Історія української журналістики» і «Креативний текст». Ivan Franko National University of Lviv, março de 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11736.
Texto completo da fonteTusiime, Hilary Mukwenda, e Nahom Eyasu Alemu. Embracing E-Learning in Public Universities in Ethiopia and Uganda. Mary Lou Fulton Teachers College, dezembro de 2023. http://dx.doi.org/10.14507/mcf-eli.j2.
Texto completo da fonteClement, Timothy, e Brett Vaughan. Evaluation of a mobile learning platform for clinical supervision. University of Melbourne, 2021. http://dx.doi.org/10.46580/124369.
Texto completo da fonteAkhmedjanova, Diana, e Komiljon Karimov. Covid-19’s Effects on Higher Education in Uzbekistan: The Case of Westminster International University in Tashkent. TOSHKENT SHAHRIDAGI XALQARO VESTMINSTER UNIVERSITETI, novembro de 2020. https://doi.org/10.70735/azco9450.
Texto completo da fonteNahorniak, Maya. Occupation of profession: Methodology of laboratory classes from practically-oriented courses under distance learning (on an example of discipline «Radioproduction»). Ivan Franko National University of Lviv, fevereiro de 2022. http://dx.doi.org/10.30970/vjo.2022.51.11412.
Texto completo da fonteSchmidt-Sane, Megan, Tabitha Hrynick, Erica Nelson e Tom Barker. Mutual Learning for Policy Impact: Insights from CORE. Adapting research methods in the context of Covid-19. Institute of Development Studies (IDS), dezembro de 2021. http://dx.doi.org/10.19088/core.2021.008.
Texto completo da fonteFalfushynska, Halina I., Bogdan B. Buyak, Hryhorii V. Tereshchuk, Grygoriy M. Torbin e Mykhailo M. Kasianchuk. Strengthening of e-learning at the leading Ukrainian pedagogical universities in the time of COVID-19 pandemic. [б. в.], junho de 2021. http://dx.doi.org/10.31812/123456789/4442.
Texto completo da fonteДирда, Ірина Анатоліївна, Марина Вікторівна Малоіван e Анна Олександрівна Томіліна. Innovative online teaching tools for students who major in english philology: challenges and opportinutuies. Видавнича група «Наукові перспективи», 2023. http://dx.doi.org/10.31812/123456789/7078.
Texto completo da fonteDanylchuk, Hanna B., e Serhiy O. Semerikov. Advances in machine learning for the innovation economy: in the shadow of war. Криворізький державний педагогічний університет, agosto de 2023. http://dx.doi.org/10.31812/123456789/7732.
Texto completo da fonte