Literatura científica selecionada sobre o tema "Optical Atomic Magnetometry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Optical Atomic Magnetometry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Optical Atomic Magnetometry"
Li, Rujie, Christopher Perrella e André Luiten. "Enhancing the sensitivity of atomic magnetometer with a multi-passed probe light". Applied Physics Letters 121, n.º 17 (24 de outubro de 2022): 172402. http://dx.doi.org/10.1063/5.0119222.
Texto completo da fonteSong, Shupei, Xining Li, Xinyi Zhu, Bao Chen, Zhifei Yu, Nanyang Xu e Bing Chen. "An integrated and scalable experimental system for nitrogen-vacancy ensemble magnetometry". Review of Scientific Instruments 94, n.º 1 (1 de janeiro de 2023): 014703. http://dx.doi.org/10.1063/5.0125441.
Texto completo da fonteOrzechowska, Zuzanna, Mariusz Mrózek, Wojciech Gawlik e Adam Wojciechowski. "Preparation and characterization of AFM tips with nitrogen-vacancy and nitrogen-vacancy-nitrogen color centers". Photonics Letters of Poland 13, n.º 2 (30 de junho de 2021): 28. http://dx.doi.org/10.4302/plp.v13i2.1095.
Texto completo da fonteLi, Bei-Bei, Jan Bílek, Ulrich B. Hoff, Lars S. Madsen, Stefan Forstner, Varun Prakash, Clemens Schäfermeier, Tobias Gehring, Warwick P. Bowen e Ulrik L. Andersen. "Quantum enhanced optomechanical magnetometry". Optica 5, n.º 7 (12 de julho de 2018): 850. http://dx.doi.org/10.1364/optica.5.000850.
Texto completo da fonteFatemi, Fredrik K., e Mark Bashkansky. "Spatially resolved magnetometry using cold atoms in dark optical tweezers". Optics Express 18, n.º 3 (19 de janeiro de 2010): 2190. http://dx.doi.org/10.1364/oe.18.002190.
Texto completo da fonteDyakonov, Vladimir, Hannes Kraus, V. A. Soltamov, Franziska Fuchs, Dmitrij Simin, Stefan Vaeth, Andreas Sperlich, Pavel Baranov e G. Astakhov. "Atomic-Scale Defects in Silicon Carbide for Quantum Sensing Applications". Materials Science Forum 821-823 (junho de 2015): 355–58. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.355.
Texto completo da fonteMaayani, Shai, Christopher Foy, Dirk Englund e Yoel Fink. "Distributed Quantum Fiber Magnetometry". Laser & Photonics Reviews 13, n.º 7 (17 de maio de 2019): 1900075. http://dx.doi.org/10.1002/lpor.201900075.
Texto completo da fonteZhang, Qiaolin, Hui Sun, Shuangli Fan e Hong Guo. "High-sensitivity optical Faraday magnetometry with intracavity electromagnetically induced transparency". Journal of Physics B: Atomic, Molecular and Optical Physics 49, n.º 23 (18 de novembro de 2016): 235503. http://dx.doi.org/10.1088/0953-4075/49/23/235503.
Texto completo da fonteLi, Bei-Bei, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop e Warwick P. Bowen. "Ultrabroadband and sensitive cavity optomechanical magnetometry". Photonics Research 8, n.º 7 (3 de junho de 2020): 1064. http://dx.doi.org/10.1364/prj.390261.
Texto completo da fonteBelfi, J., G. Bevilacqua, V. Biancalana, Y. Dancheva e L. Moi. "All optical sensor for automated magnetometry based on coherent population trapping". Journal of the Optical Society of America B 24, n.º 7 (15 de junho de 2007): 1482. http://dx.doi.org/10.1364/josab.24.001482.
Texto completo da fonteTeses / dissertações sobre o assunto "Optical Atomic Magnetometry"
Vigilante, Antonio. "Advances in Atomic Magnetometry for Ultra-Low-Field NMR and MRI". Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1087368.
Texto completo da fonteRutkowski, Jaroslaw. "Study and Realization of a Miniature Isotropic Helium Magnetometer". Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2005/document.
Texto completo da fonteLieb, Gaëtan. "Magnétomètre atomique tout-optique pour applications géophysiques, spatiales et médicales". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC252.
Texto completo da fonteThe measurement of the Earth magnetic field, using satellites of reduced volume –so called cube-sats or nano-sats– requires optically pumped magnetometers of strongly reduced size that can be operated as gradiometers without crosstalk between different sensors. In order to fulfill these conditions we developed an architecture for all-optical magnetometers.In this work, we present an all-optical isotopic solution for a scalar helium-4 magnetometer based on atomic alignment. This architecture originates in the combination of an optically created radiofrequency magnetic field realized by a vector light-shift and of an intensity modulation of the pump light. The first experimental tests of this configuration proved the existence of a working point that allows isotropic operation. First estimations of noise and precision using this configuration give hope to obtain equivalent performance than that of scalar isotropic magnetometers that were realized by the CEA-Leti for the mission Swarm.Additionally, the all-optical architectures respond to the needs that exist in the field of medical magnetic imaging. In fact, building a matrix of commonly used sensors involves problems of cross-talk between proximate magnetometers. The second focus of this thesis lies on all-optical magnetometers designated for the measurement of magnetic fields with small amplitudes. Exploring the configurations of Hanle magnetometers that are based on atomic alignment, we identified a technique which gives access to two magnetic field components while using only one single optical access to the gas cell, a solution that was experimentally tested. We theoretically investigate an extension of this configuration that allows the measurement of all three components of the magnetic field, using a partially depolarized light as optical pump
Sturm, Michael [Verfasser], Peter [Akademischer Betreuer] Fierlinger, Peter [Gutachter] Fierlinger e Lothar [Gutachter] Oberauer. "A highly drift stable and fully optical Cs atomic magnetometer for a new generation nEDM experiment / Michael Sturm ; Gutachter: Peter Fierlinger, Lothar Oberauer ; Betreuer: Peter Fierlinger". München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/121217819X/34.
Texto completo da fonteUrban, Jeffry Todd. "Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects". Berkeley, Calif. : Oak Ridge, Tenn. : Lawrence Berkeley National Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/836811-joXo6p/native/.
Texto completo da fontePublished through the Information Bridge: DOE Scientific and Technical Information. "LBNL--56768" Urban, Jeffry Todd. USDOE Director. Office of Science. Office of Basic Energy Sciences (US) 12/21/2004. Report is also available in paper and microfiche from NTIS.
Hsu, Chia-Teng, e 許家騰. "Low Optical Noise Atomic Magnetometer with System Optimization". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/74151999807312230309.
Texto completo da fonte國立臺灣大學
應用物理所
100
High sensitivity magnetometers are applied in many fields including physics, biology, and geology. For detection of magnetic fields, low-temperature superconducting quantum interference device (SQUID) magnetometers give the most sensitive performance traditionally. However, to maintain SQUID working in the low temperature requires relatively high cost. Recently, alkali-metal magnetometers approach the same sensitivity level without this drawback. The principle of atomic magnetometers is based on the detection of Larmor spin precession in the magnetic fields. The fundamental sensitivity limit of atomic magnetometers comes from the shot noise which is associated with the transverse relaxation time. Spin exchanged collisions contributes to the transverse relaxation time mostly, and it can be reduced by operating in the environment with a near zero magnetic field. As the condition is introduced, it can reduce the noise limit down to 0.3 ft/√Hz. Such environment character is called spin exchange relaxation free (SERF). In this thesis, I analyze the system with simulations and experiments in an attempt to reach the optimization. The narrowest width 210 μG of the dispersion curves is read with the pump beam intensity 0.52 W/cm^2. Besides, the low optical noise system is built via applying a balance detector with appropriately adjusting the polarization of probe beam. The noise level decreases from mV to μV as compared from our previous system.
Wojciechowski, Adam. "Koherencje kwantowe w zimnych atomach". Praca doktorska, 2011. https://ruj.uj.edu.pl/xmlui/handle/item/53923.
Texto completo da fonteCapítulos de livros sobre o assunto "Optical Atomic Magnetometry"
Derevianko, Andrei, e Szymon Pustelny. "Global Quantum Sensor Networks as Probes of the Dark Sector". In The Search for Ultralight Bosonic Dark Matter, 281–303. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_10.
Texto completo da fonteColombo, Simone, Vladimir Dolgovskiy, Theo Scholtes, Zoran D. Grujić, Victor Lebedev e Antoine Weis. "Orientational Dependence of Optically Detected Magnetic Resonance Signals in Laser-Driven Atomic Magnetometers". In Exploring the World with the Laser, 309–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64346-5_17.
Texto completo da fonteBevilacqua, G., V. Biancalana, Y. Dancheva e L. Moi. "Optical Atomic Magnetometry for Ultra-Low-Field NMR Detection". In Annual Reports on NMR Spectroscopy, 103–48. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-404716-7.00003-1.
Texto completo da fonteZheng, Huijie, Arne Wickenbrock, Georgios Chatzidrosos, Lykourgos Bougas, Nathan Leefer, Samer Afach, Andrey Jarmola et al. "Novel Magnetic-Sensing Modalities with Nitrogen-Vacancy Centers in Diamond". In Engineering Applications of Diamond. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95267.
Texto completo da fonteChalupczak, Witold, Rachel M. Godun e Szymon Pustelny. "Radio-Frequency Spectroscopy as a Tool for Studying Coherent Spin Dynamics and for Application to Radio-Frequency Magnetometry". In Advances In Atomic, Molecular, and Optical Physics, 297–336. Elsevier, 2018. http://dx.doi.org/10.1016/bs.aamop.2018.03.001.
Texto completo da fonteLee, Myeongwon, Jungbae Yoon e Donghun Lee. "Atomic Scale Magnetic Sensing and Imaging Based on Diamond NV Centers". In Magnetometers - Fundamentals and Applications of Magnetism. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.84204.
Texto completo da fonteBoto, Elena, Niall Holmes, Tim M. Tierney, James Leggett, Ryan Hill, Stephanie Mellor, Gillian Roberts, Gareth R. Barnes, Richard Bowtell e Matthew J. Brookes. "Magnetoencephalography Using Optically Pumped Magnetometers". In Fifty Years of Magnetoencephalography, 104–24. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190935689.003.0008.
Texto completo da fonteSavukov, Igor. "Ultra-Sensitive Optical Atomic Magnetometers and Their Applications". In Advances in Optical and Photonic Devices. InTech, 2010. http://dx.doi.org/10.5772/7153.
Texto completo da fonteMaría José Santillán, Jesica, David Muñetón Arboleda, Valeria Beatriz Arce, Lucía Beatriz Scaffardi e Daniel Carlos Schinca. "A Simple and “Green” Technique to Synthesize Metal Nanocolloids by Ultrashort Light Pulses". In Colloids - Types, Preparation and Applications [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94750.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Optical Atomic Magnetometry"
Yang, Xuting, Sarah Francis, Meryem Benelajla e Jennifer T. Choy. "Chip-scale optics for atomic magnetometry". In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/noma.2021.notu3d.4.
Texto completo da fonteDeng, L., F. Zhou e E. W. Hagley. "Giant Enhancement in Nonlinear Optical-Atomic Magnetometry". In Laser Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ls.2016.lf2e.7.
Texto completo da fonteDeans, Cameron, Luca Marmugi, Sarah Hussain e Ferruccio Renzoni. "Optical atomic magnetometry for magnetic induction tomography of the heart". In SPIE Photonics Europe, editado por Jürgen Stuhler e Andrew J. Shields. SPIE, 2016. http://dx.doi.org/10.1117/12.2227538.
Texto completo da fonteLi, Yingying, Mingxiang Ma, Yukun Luo, Yubo Xie, Jie Wang e Fufang Xu. "Discussion of cross-axis isolation in vector atomic magnetometry via longitudinal field modulation". In 2021 International Conference of Optical Imaging and Measurement (ICOIM). IEEE, 2021. http://dx.doi.org/10.1109/icoim52180.2021.9524417.
Texto completo da fonteWilson, Nathanial, Rujie Li, Christopher Perrella, Philip S. Light, Russell Anderson e Andre N. Luiten. "A high-bandwidth atomic magnetometer". In AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019, editado por Arnan Mitchell e Halina Rubinsztein-Dunlop. SPIE, 2019. http://dx.doi.org/10.1117/12.2541255.
Texto completo da fonteLiu, Qiang, Junhai Zhang, Xianjin Zeng, Jiuxing Li, Qingmeng Li, Qiang Huang, Simiao Han, Zongjun Huang e Weimin Sun. "Proper temperature for Cs atomic magnetometer". In International Conference on Optical Instruments and Technology (OIT2011), editado por Brian Culshaw, YanBiao Liao, Anbo Wang, Xiaoyi Bao e Xudong Fan. SPIE, 2011. http://dx.doi.org/10.1117/12.907133.
Texto completo da fonteFiderer, Lukas J., e Daniel Braun. "A quantum-chaotic cesium-vapor magnetometer". In Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology, editado por Selim M. Shahriar e Jacob Scheuer. SPIE, 2019. http://dx.doi.org/10.1117/12.2515204.
Texto completo da fonteSchwindt, P. D. D., B. J. Lindseth, V. Shah, S. Knappe e J. Kitching. "Chip-scale atomic magnetometer". In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4629184.
Texto completo da fonteGerginov, Vladislav P., Linfeng Li, Marja Gerginov, Sean Krzyzewski, Orang Alem, Jeramy Hughes, Branislav Korenko, Gleb Romanov, Marco Pomponio e Svenja Knappe. "Microfabricated magnetometers for imaging and communication". In Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II, editado por Selim M. Shahriar e Jacob Scheuer. SPIE, 2020. http://dx.doi.org/10.1117/12.2553244.
Texto completo da fonteHovde, Chris, Brian Patton, Eric Corsini, James Higbie e Dmitry Budker. "Sensitive optical atomic magnetometer based on nonlinear magneto-optical rotation". In SPIE Defense, Security, and Sensing, editado por Edward M. Carapezza. SPIE, 2010. http://dx.doi.org/10.1117/12.850302.
Texto completo da fonte