Artigos de revistas sobre o tema "Optical Atomic Magnetometry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Optical Atomic Magnetometry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Li, Rujie, Christopher Perrella e André Luiten. "Enhancing the sensitivity of atomic magnetometer with a multi-passed probe light". Applied Physics Letters 121, n.º 17 (24 de outubro de 2022): 172402. http://dx.doi.org/10.1063/5.0119222.
Texto completo da fonteSong, Shupei, Xining Li, Xinyi Zhu, Bao Chen, Zhifei Yu, Nanyang Xu e Bing Chen. "An integrated and scalable experimental system for nitrogen-vacancy ensemble magnetometry". Review of Scientific Instruments 94, n.º 1 (1 de janeiro de 2023): 014703. http://dx.doi.org/10.1063/5.0125441.
Texto completo da fonteOrzechowska, Zuzanna, Mariusz Mrózek, Wojciech Gawlik e Adam Wojciechowski. "Preparation and characterization of AFM tips with nitrogen-vacancy and nitrogen-vacancy-nitrogen color centers". Photonics Letters of Poland 13, n.º 2 (30 de junho de 2021): 28. http://dx.doi.org/10.4302/plp.v13i2.1095.
Texto completo da fonteLi, Bei-Bei, Jan Bílek, Ulrich B. Hoff, Lars S. Madsen, Stefan Forstner, Varun Prakash, Clemens Schäfermeier, Tobias Gehring, Warwick P. Bowen e Ulrik L. Andersen. "Quantum enhanced optomechanical magnetometry". Optica 5, n.º 7 (12 de julho de 2018): 850. http://dx.doi.org/10.1364/optica.5.000850.
Texto completo da fonteFatemi, Fredrik K., e Mark Bashkansky. "Spatially resolved magnetometry using cold atoms in dark optical tweezers". Optics Express 18, n.º 3 (19 de janeiro de 2010): 2190. http://dx.doi.org/10.1364/oe.18.002190.
Texto completo da fonteDyakonov, Vladimir, Hannes Kraus, V. A. Soltamov, Franziska Fuchs, Dmitrij Simin, Stefan Vaeth, Andreas Sperlich, Pavel Baranov e G. Astakhov. "Atomic-Scale Defects in Silicon Carbide for Quantum Sensing Applications". Materials Science Forum 821-823 (junho de 2015): 355–58. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.355.
Texto completo da fonteMaayani, Shai, Christopher Foy, Dirk Englund e Yoel Fink. "Distributed Quantum Fiber Magnetometry". Laser & Photonics Reviews 13, n.º 7 (17 de maio de 2019): 1900075. http://dx.doi.org/10.1002/lpor.201900075.
Texto completo da fonteZhang, Qiaolin, Hui Sun, Shuangli Fan e Hong Guo. "High-sensitivity optical Faraday magnetometry with intracavity electromagnetically induced transparency". Journal of Physics B: Atomic, Molecular and Optical Physics 49, n.º 23 (18 de novembro de 2016): 235503. http://dx.doi.org/10.1088/0953-4075/49/23/235503.
Texto completo da fonteLi, Bei-Bei, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop e Warwick P. Bowen. "Ultrabroadband and sensitive cavity optomechanical magnetometry". Photonics Research 8, n.º 7 (3 de junho de 2020): 1064. http://dx.doi.org/10.1364/prj.390261.
Texto completo da fonteBelfi, J., G. Bevilacqua, V. Biancalana, Y. Dancheva e L. Moi. "All optical sensor for automated magnetometry based on coherent population trapping". Journal of the Optical Society of America B 24, n.º 7 (15 de junho de 2007): 1482. http://dx.doi.org/10.1364/josab.24.001482.
Texto completo da fonteLi, Siran, Danyue Ma, Kun Wang, Yanan Gao, Bozheng Xing, Xiujie Fang, Bangcheng Han e Wei Quan. "High sensitivity closed-loop Rb optically pumped magnetometer for measuring nuclear magnetization". Optics Express 30, n.º 24 (16 de novembro de 2022): 43925. http://dx.doi.org/10.1364/oe.473654.
Texto completo da fonteLou, Janet W., e Geoffrey A. Cranch. "Optical frequency dependence of the light shift effect for vector magnetometry with cesium". Applied Optics 59, n.º 7 (26 de fevereiro de 2020): 2072. http://dx.doi.org/10.1364/ao.379800.
Texto completo da fonteLIU, HONG, JIANGUO ZHU e DINGQUAN XIAO. "PREPARATION AND CHARACTERIZATION OF LaFeO3 THIN FILMS ON (100) SrTiO3 SUBSTRATES BY PULSED LASER DEPOSITION". Journal of Advanced Dielectrics 01, n.º 03 (julho de 2011): 363–67. http://dx.doi.org/10.1142/s2010135x11000379.
Texto completo da fonteZhang, Rui, Teng Wu, Jingbiao Chen, Xiang Peng e Hong Guo. "Frequency Response of Optically Pumped Magnetometer with Nonlinear Zeeman Effect". Applied Sciences 10, n.º 20 (10 de outubro de 2020): 7031. http://dx.doi.org/10.3390/app10207031.
Texto completo da fonteFarfurnik, D., A. Jarmola, D. Budker e N. Bar-Gill. "Spin ensemble-based AC magnetometry using concatenated dynamical decoupling at low temperatures". Journal of Optics 20, n.º 2 (1 de janeiro de 2018): 024008. http://dx.doi.org/10.1088/2040-8986/aaa1bf.
Texto completo da fonteWeis, A., e R. Wynands. "Laser-based precision magnetometry in fundamental and applied research". Optics and Lasers in Engineering 43, n.º 3-5 (março de 2005): 387–401. http://dx.doi.org/10.1016/j.optlaseng.2004.03.010.
Texto completo da fonteLi, Bei-Bei, Lingfeng Ou, Yuechen Lei e Yong-Chun Liu. "Cavity optomechanical sensing". Nanophotonics 10, n.º 11 (24 de agosto de 2021): 2799–832. http://dx.doi.org/10.1515/nanoph-2021-0256.
Texto completo da fonteJin, Kai, Xuxing Geng, Zhi Liang, Wangwang Tang, Jianfeng Xiao, Heng Hu, Guangming Huang, Gaoxiang Li, Guoqing Yang e Shangqing Liang. "Design of Portable Self-Oscillating VCSEL-Pumped Cesium Atomic Magnetometer". Electronics 11, n.º 22 (9 de novembro de 2022): 3666. http://dx.doi.org/10.3390/electronics11223666.
Texto completo da fonteGuevara De Jesus, Michael, Zhuyun Xiao, Maite Goiriena-Goikoetxea, Rajesh V. Chopdekar, Mohanchandra K. Panduranga, Paymon Shirazi, Adrian Acosta et al. "Magnetic state switching in FeGa microstructures". Smart Materials and Structures 31, n.º 3 (25 de janeiro de 2022): 035005. http://dx.doi.org/10.1088/1361-665x/ac46db.
Texto completo da fonteZamani, Amin, Maliheh Ranjbaran, Mohammad Mehdi Tehranchi, Seyedeh Mehri Hamidi e Seyed Mohammad Hosein Khalkhali. "Myocardial Ischemia Detection by a Sensitive Pump-Probe Atomic Magnetometer". Journal of Lasers in Medical Sciences 13, n.º 1 (26 de maio de 2022): e24-e24. http://dx.doi.org/10.34172/jlms.2022.24.
Texto completo da fonteLu, Jixi, Jing Wang, Ke Yang, Junpeng Zhao, Wei Quan, Bangcheng Han e Ming Ding. "In-Situ Measurement of Electrical-Heating-Induced Magnetic Field for an Atomic Magnetometer". Sensors 20, n.º 7 (25 de março de 2020): 1826. http://dx.doi.org/10.3390/s20071826.
Texto completo da fonteLee, Hyunjoon, Kiwoong Kim, Seong-Joo Lee, Chan-Seok Kang, Kwon Kyu Yu, Yong-Ho Lee e Han Seb Moon. "Development of spin-exchange relaxation free magnetometer with a compact heating system". ACTA IMEKO 2, n.º 1 (16 de agosto de 2013): 16. http://dx.doi.org/10.21014/acta_imeko.v2i1.46.
Texto completo da fonteDuò, L., M. Marcon e F. Ciccacci. "Input electron optics for Mott detectors used in secondary electron magnetometry". Journal of Electron Spectroscopy and Related Phenomena 95, n.º 2-3 (outubro de 1998): 255–60. http://dx.doi.org/10.1016/s0368-2048(98)00250-3.
Texto completo da fonteMasuyama, Yuta, Katsumi Suzuki, Akira Hekizono, Mitsuyasu Iwanami, Mutsuko Hatano, Takayuki Iwasaki e Takeshi Ohshima. "Gradiometer Using Separated Diamond Quantum Magnetometers". Sensors 21, n.º 3 (2 de fevereiro de 2021): 977. http://dx.doi.org/10.3390/s21030977.
Texto completo da fonteMatthews, A. J., J. P. Watts, M. Zhu, A. Usher, M. Elliott, W. G. Herrenden-Harker, P. R. Morris, M. Y. Simmons e D. A. Ritchie. "Current breakdown of the integer and fractional quantum Hall effects detected by torque magnetometry". Physica E: Low-dimensional Systems and Nanostructures 6, n.º 1-4 (fevereiro de 2000): 140–43. http://dx.doi.org/10.1016/s1386-9477(99)00079-x.
Texto completo da fonteZeng, Xian Jin, Mo Si Hao, Qing Meng Li, Qiang Liu, Jun Hai Zhang e Wei Min Sun. "A Design of Cesium Atomic Magnetometer Based on Circular Dichroism". Applied Mechanics and Materials 203 (outubro de 2012): 268–72. http://dx.doi.org/10.4028/www.scientific.net/amm.203.268.
Texto completo da fonteMihailovic, Pedja, e Slobodan Petricevic. "Fiber Optic Sensors Based on the Faraday Effect". Sensors 21, n.º 19 (30 de setembro de 2021): 6564. http://dx.doi.org/10.3390/s21196564.
Texto completo da fonteВершовский, А. К., С. П. Дмитриев, Г. Г. Козлов, А. С. Пазгалев e М. В. Петренко. "Проекционный спиновый шум в оптических квантовых датчиках на тепловых атомах". Журнал технической физики 90, n.º 8 (2020): 1243. http://dx.doi.org/10.21883/jtf.2020.08.49533.438-19.
Texto completo da fonteMa, Yintao, Zhixia Qiao, Mingzhi Yu, Yanbin Wang, Yao Chen, Guoxi Luo, Ping Yang et al. "Single-beam integrated hybrid optical pumping spin exchange relaxation free magnetometer for biomedical applications". Applied Physics Letters 121, n.º 11 (12 de setembro de 2022): 114001. http://dx.doi.org/10.1063/5.0105945.
Texto completo da fonteMu, Jiliang, Zhang Qu, Zongmin Ma, Shaowen Zhang, Yunbo Shi, Jian Gao, Xiaoming Zhang et al. "Ensemble spin fabrication and manipulation of NV centres for magnetic sensing in diamond". Sensor Review 37, n.º 4 (18 de setembro de 2017): 419–24. http://dx.doi.org/10.1108/sr-09-2016-0163.
Texto completo da fonteJain, Megha, Manju, Pargam Vashishtha, Govind Gupta, Anil Kumar Sinha, Mukul Gupta, Ankush Vij e Anup Thakur. "Mechanistic insights into defect generation and tuning of optical properties in Zn1−x Fe x Al2O4(0.01 ≤ x ≤ 0.40) nanocrystals". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, n.º 5 (15 de agosto de 2020): 757–68. http://dx.doi.org/10.1107/s2052520620009130.
Texto completo da fonteBennett, James S., Brian E. Vyhnalek, Hamish Greenall, Elizabeth M. Bridge, Fernando Gotardo, Stefan Forstner, Glen I. Harris, Félix A. Miranda e Warwick P. Bowen. "Precision Magnetometers for Aerospace Applications: A Review". Sensors 21, n.º 16 (18 de agosto de 2021): 5568. http://dx.doi.org/10.3390/s21165568.
Texto completo da fonteJun-xiang ZHAO, 赵俊祥, 左冠华 Guan-hua ZUO, 李静 Jing LI, 张玉驰 Yu-chi ZHANG, 张鹏飞 Peng-fei ZHANG e 张天才 Tian-cai ZHANG. "基于腔增强的磁光旋转铯原子磁强计". Acta Sinica Quantum Optica 27, n.º 3 (2021): 192. http://dx.doi.org/10.3788/jqo20212703.0201.
Texto completo da fonteZhang, Rui, Wei Xiao, Yudong Ding, Yulong Feng, Xiang Peng, Liang Shen, Chenxi Sun et al. "Recording brain activities in unshielded Earth’s field with optically pumped atomic magnetometers". Science Advances 6, n.º 24 (junho de 2020): eaba8792. http://dx.doi.org/10.1126/sciadv.aba8792.
Texto completo da fonteLi, Guozhu, Qing Xin, Xuxing Geng, Zhi Liang, Shangqing Liang, Guangming Huang, Gaoxiang Li e Guoqing Yang. "Current sensor based on an atomic magnetometer for DC application". Chinese Optics Letters 18, n.º 3 (2020): 031202. http://dx.doi.org/10.3788/col202018.031202.
Texto completo da fonteAkhmedzhanov, R. A., L. A. Gushchin, I. V. Zelensky, V. A. Nizov, N. A. Nizov e D. A. Sobgaida. "Application of polycrystalline diamonds for magnetometry based on interactions of nonequivalently oriented groups of NV centres". Quantum Electronics 48, n.º 10 (31 de outubro de 2018): 912–15. http://dx.doi.org/10.1070/qel16759.
Texto completo da fonteYan, Yeguang, Jixi Lu, Binquan Zhou, Kun Wang, Ziao Liu, Xiaoyu Li, Weiyi Wang e Gang Liu. "Analysis and Correction of the Crosstalk Effect in a Three-Axis SERF Atomic Magnetometer". Photonics 9, n.º 9 (14 de setembro de 2022): 654. http://dx.doi.org/10.3390/photonics9090654.
Texto completo da fonteLong, Dafeng, Xiaoming Zhang, Xiaohui Wei, Zhongliang Luo e Jianzhong Cao. "A Fast Calibration and Compensation Method for Magnetometers in Strap-Down Spinning Projectiles". Sensors 18, n.º 12 (27 de novembro de 2018): 4157. http://dx.doi.org/10.3390/s18124157.
Texto completo da fonteLi Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying e Lin Qiang. "All-optical high sensitive atomic magnetometer". Acta Physica Sinica 59, n.º 2 (2010): 877. http://dx.doi.org/10.7498/aps.59.877.
Texto completo da fonteThormählen, Lars, Dennis Seidler, Viktor Schell, Frans Munnik, Jeffrey McCord e Dirk Meyners. "Sputter Deposited Magnetostrictive Layers for SAW Magnetic Field Sensors". Sensors 21, n.º 24 (15 de dezembro de 2021): 8386. http://dx.doi.org/10.3390/s21248386.
Texto completo da fonteLiu, Qiang, Yu Dan Sun, Qiang Huang, Xian Jin Zeng, Jun Hai Zhang e Wei Min Sun. "Measurement of Linearly Polarized Light Rotation Applied in Atomic Magnetometer". Advanced Materials Research 753-755 (agosto de 2013): 2149–52. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.2149.
Texto completo da fonteHong, Hyun-Gue, Sang Eon Park, Sang-Bum Lee, Myoung-Sun Heo, Jongcheol Park, Tae Hyun Kim, Hee Yeon Kim e Taeg Yong Kwon. "Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping". Sensors 21, n.º 4 (22 de fevereiro de 2021): 1517. http://dx.doi.org/10.3390/s21041517.
Texto completo da fonteBiryukov, Yaroslav P., Almaz L. Zinnatullin, Mikhail A. Cherosov, Andrey P. Shablinskii, Roman V. Yusupov, Rimma S. Bubnova, Farit G. Vagizov, Stanislav K. Filatov, M. S. Avdontceva e Igor V. Pekov. "Low-temperature investigation of natural iron-rich oxoborates vonsenite and hulsite: thermal deformations of crystal structure, strong negative thermal expansion and cascades of magnetic transitions". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 77, n.º 6 (26 de novembro de 2021): 1021–34. http://dx.doi.org/10.1107/s2052520621010866.
Texto completo da fonteLu, Fei, Shuying Wang, Nuozhou Xu, Bo Li, Jixi Lu e Bangcheng Han. "Analysis and Suppression of the Cross-Axis Coupling Effect for Dual-Beam SERF Atomic Magnetometer". Photonics 9, n.º 11 (25 de outubro de 2022): 792. http://dx.doi.org/10.3390/photonics9110792.
Texto completo da fonteRosner, M., D. Beck, P. Fierlinger, H. Filter, C. Klau, F. Kuchler, P. Rößner, M. Sturm, D. Wurm e Z. Sun. "A highly drift-stable atomic magnetometer for fundamental physics experiments". Applied Physics Letters 120, n.º 16 (18 de abril de 2022): 161102. http://dx.doi.org/10.1063/5.0083854.
Texto completo da fonteHigbie, J. M., E. Corsini e D. Budker. "Robust, high-speed, all-optical atomic magnetometer". Review of Scientific Instruments 77, n.º 11 (novembro de 2006): 113106. http://dx.doi.org/10.1063/1.2370597.
Texto completo da fonteHutanu, Vladimir, Hao Deng, Sheng Ran, Wesley T. Fuhrman, Henrik Thoma e Nicholas P. Butch. "Low-temperature crystal structure of the unconventional spin-triplet superconductor UTe2 from single-crystal neutron diffraction". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, n.º 1 (29 de janeiro de 2020): 137–43. http://dx.doi.org/10.1107/s2052520619016950.
Texto completo da fonteLiu, Qiang, Yu Dan Sun, Yan Nan Zhuo, Jia Xing Wang e Tian Shu Fu. "Influence of He Buffer Gas Pressure on Cs Atomic Polarizability". Applied Mechanics and Materials 475-476 (dezembro de 2013): 173–76. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.173.
Texto completo da fonteAmorós-Binefa, Júlia, e Jan Kołodyński. "Noisy atomic magnetometry in real time". New Journal of Physics 23, n.º 12 (1 de dezembro de 2021): 123030. http://dx.doi.org/10.1088/1367-2630/ac3b71.
Texto completo da fonteWang, Bowen, Xiang Peng, Haidong Wang, Wei Xiao e Hong Guo. "All-Optical Parametric-Resonance Magnetometer Based on 4He Atomic Alignment". Sensors 22, n.º 11 (31 de maio de 2022): 4184. http://dx.doi.org/10.3390/s22114184.
Texto completo da fonte