Siga este link para ver outros tipos de publicações sobre o tema: Pendule centrifuge.

Artigos de revistas sobre o tema "Pendule centrifuge"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pendule centrifuge".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Ineichen, Laurent. "Controllable centrifugal pendulum". PAMM 10, n.º 1 (16 de novembro de 2010): 611–12. http://dx.doi.org/10.1002/pamm.201010298.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jinnouchi, Y., Y. Araki, J. Inoue e S. Kubo. "Dynamic Instability of a High-Speed Rotor Containing a Partitioned Cavity Filled With Two Kinds of Liquids". Journal of Pressure Vessel Technology 111, n.º 4 (1 de novembro de 1989): 450–56. http://dx.doi.org/10.1115/1.3265703.

Texto completo da fonte
Resumo:
This paper is concerned with the dynamic instability of a high-speed rotor containing a partitioned cavity filled with two kinds of liquids of different density. The system considered simulates a centrifuge of two liquids type, in which the cylindrical cavity is divided into fan-shaped compartments in order to suppress asynchronous whirling motions induced by waves in the liquids traveling around the cavity. Assuming rotor vibrations to be small, liquids inviscid, and external damping negligible, perturbed motions of the liquid-rotor system are analyzed. The theory shows that the rotor containing a partitioned cavity can still exhibit unstable behavior, similar to that observed for a rotor system equipped with centrifugal pendula, in the region where the rotor speed is nearly equal to the sum of the critical speed of the system and the natural frequency of the liquids. The theory has been verified by the experiments. The dependence of the unstable region on the main system parameters is also discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mayet, J., e H. Ulbrich. "Tautochronic centrifugal pendulum vibration absorbers". Journal of Sound and Vibration 333, n.º 3 (fevereiro de 2014): 711–29. http://dx.doi.org/10.1016/j.jsv.2013.09.042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Zink, Matthias, e Markus Hausner. "The centrifugal pendulum-type absorber". ATZ worldwide 111, n.º 7-8 (julho de 2009): 42–47. http://dx.doi.org/10.1007/bf03225088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hässler, Martin, Ad Kooy, Roland Welter e Viktor Lichtenwald. "Clutch Disc With Centrifugal Pendulum Absorber". Auto Tech Review 5, n.º 4 (abril de 2016): 26–31. http://dx.doi.org/10.1365/s40112-016-1118-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Häßler, Martin, Ad Kooy, Roland Welter e Viktor Lichtenwald. "Clutch Disc with Centrifugal Pendulum Absorber". ATZ worldwide 118, n.º 1 (19 de dezembro de 2015): 42–47. http://dx.doi.org/10.1007/s38311-015-0087-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Mitchiner, R. G., e R. G. Leonard. "Centrifugal Pendulum Vibration Absorbers—Theory and Practice". Journal of Vibration and Acoustics 113, n.º 4 (1 de outubro de 1991): 503–7. http://dx.doi.org/10.1115/1.2930214.

Texto completo da fonte
Resumo:
Reciprocating mechanical systems, such as pumps and compressors, present a nonuniform dynamic load to the driving motor. These load variations and their interactions with the dynamic characteristics of the motor result in dynamic torque variations on the rotor which have very significant harmonic components. These torque variations contribute to undesirable dynamic loading of the mounting frame and subsequent transmission of vibrations and noise into the supporting structure. Centrifugal pendulum absorbers offer an excellent means for the elimination of the effects of some of these torque harmonics. Since most reciprocating machinery operates over a speed range depending on load conditions, the centrifugal absorber is an excellent means for insuring that the suppression of vibrations is insensitive to speed and local conditions. While the virtues of centrifugal absorbers are well known as are the differential equations describing the dynamics of the absorbers, the literature does not address the case of real absorbers with distributed mass properties. This paper presents a derivation of the equations of motion for the rotor and the distributed mass pendulum, along with those insights and techniques necessary for the practical design of a centrifugal pendulum system. The tuning of the pendulum is discussed along with damping requirements. A case study is presented where a set of pendulums is employed on the rotor of an air compressor driven by a close-coupled electric induction motor. In the case study, first and second harmonic rotor torques (30 percent and 9 percent, respectively, of the average rotor torque) are eliminated with 3.77 lb and 0.83 lb pendulums in a 3-horsepower, 875 rpm machine.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Pitre, Sangita N., S. V. Dhurandhar, D. G. Blair e Ju Li. "Losses in pendular suspensions due to centrifugal coupling". Pramana 42, n.º 3 (março de 1994): 261–70. http://dx.doi.org/10.1007/bf02847687.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Cera, Mattia, Marco Cirelli, Ettore Pennestrì e Pier Paolo Valentini. "Design analysis of torsichrone centrifugal pendulum vibration absorbers". Nonlinear Dynamics 104, n.º 2 (abril de 2021): 1023–41. http://dx.doi.org/10.1007/s11071-021-06345-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kwak, Gyubin, e Hyeong-ill Lee. "Investigation of the Point-Mass Pendulum Centrifugal Pendulum Absorber Using Transfer Matrix Method". Transactions of the Korean Society for Noise and Vibration Engineering 31, n.º 1 (20 de fevereiro de 2021): 64–72. http://dx.doi.org/10.5050/ksnve.2021.31.1.064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Fainerman, I. A., e L. A. Zabolotskii. "Improvement of the dynamics of centrifuges mounted on pendulum suspensions". Chemical and Petroleum Engineering 28, n.º 2 (fevereiro de 1992): 95–98. http://dx.doi.org/10.1007/bf01148829.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Newland, David E. "Developments in the Design of Centrifugal Pendulum Vibration Absorbers". International Journal of Acoustics and Vibration 25, n.º 2 (30 de junho de 2020): 266–77. http://dx.doi.org/10.20855/ijav.2020.25.21687.

Texto completo da fonte
Resumo:
For over 60 years, the torsional vibration of reciprocating aircraft engines has been controlled by centrifugal pendulum vibration absorbers. Loose weights attached to an engine's crankshaft act as tuned-mass absorbers by oscillating at a frequency in proportion to rotational speed. More recently, similar loose masses have been attached to the flywheels of automobile engines. The need to achieve increased power from fewer cylinders, while reducing weight and improving economy, has exacerbated torsional vibration of the drive train. The dynamics of a wheel carrying many centrifugal pendulums of bifilar design has been the subject of a growing literature, but much less has been written about roller-type pendulums and about overall system performance. This paper is a new analysis of bifilar and roller systems and their design requirements. The current state of knowledge about practical design limitations is explained and the need for further research discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Haddow, Alan G., e Steven W. Shaw. "Centrifugal Pendulum Vibration Absorbers: An Experimental and Theoretical Investigation". Nonlinear Dynamics 34, n.º 3/4 (dezembro de 2003): 293–307. http://dx.doi.org/10.1023/b:nody.0000013509.51299.c0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

ISHIDA, Yukio, Tsuyoshi INOUE, Taishi KAGAWA e Motohiko UEDA. "710 Torsional Vibration Suppression by Centrifugal Pendulum Vibration Absorbers". Proceedings of the Dynamics & Design Conference 2003 (2003): _710–1_—_710–6_. http://dx.doi.org/10.1299/jsmedmc.2003._710-1_.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Chao, C. P., C. T. Lee e S. W. Shaw. "NON-UNISON DYNAMICS OF MULTIPLE CENTRIFUGAL PENDULUM VIBRATION ABSORBERS". Journal of Sound and Vibration 204, n.º 5 (julho de 1997): 769–94. http://dx.doi.org/10.1006/jsvi.1997.0960.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Hollkamp, J. J., R. L. Bagley e R. W. Gordon. "A CENTRIFUGAL PENDULUM ABSORBER FOR ROTATING, HOLLOW ENGINE BLADES". Journal of Sound and Vibration 219, n.º 3 (janeiro de 1999): 539–49. http://dx.doi.org/10.1006/jsvi.1998.1964.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

MATSUMURA, Shigeki, e Haruo HOUJOH. "374 Applying Centrifugal Pendulum Vibration Absorber to Gear System". Proceedings of the Dynamics & Design Conference 2009 (2009): _374–1_—_374–3_. http://dx.doi.org/10.1299/jsmedmc.2009._374-1_.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Erofeev, Vladimir Ivanovich, Alexey Olegovich Malkhanov, Grigory Yakovlevich Panovko e Vladimir Mikhailovich Sandalov. "CENTRIFUGAL PENDULUM DYNAMIC DAMPER OF VIBRATIONS OF ROTOR SYSTEMS". Проблемы машиностроения и автоматизации, n.º 2 (2021): 99–106. http://dx.doi.org/10.52261/02346206_2021_2_99.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

LIANG, CHI-HSIUNG, e PI-CHENG TUNG. "A FUZZY NEURAL NETWORK FOR THE ACTIVE VIBRATION CONTROL OF A CENTRIFUGAL PENDULUM VIBRATION ABSORBER". International Journal of Modern Physics C 20, n.º 12 (dezembro de 2009): 1963–79. http://dx.doi.org/10.1142/s0129183109014850.

Texto completo da fonte
Resumo:
In this study, we develop a fuzzy back-propagation (BP) neural network controller for active vibration control of a centrifugal pendulum vibration absorber (CPVA). The fuzzy BP neural network controller systems can be viewed as a conventional fuzzy algorithm for coarse tuning. The BP algorithm can also be applied for fine tuning, in this case to regulate the anti-resonance frequency in an active pendulum vibration absorber (APVA), by suppressing vibration of the carrier. The dynamic model of the APVA was developed and simulated using MATLAB. In the simulation results, when the frequency of the disturbance changes, the outputs of the fuzzy BP neural network controller are used to determine an appropriate value for the torque of the active pendulum such that the vibration amplitude of the carrier is minimized. A comparison of the carrier vibration results for the CPVA, the fuzzy algorithm and the fuzzy BP algorithm is performed. The simulation results demonstrate the effectiveness of the proposed fuzzy BP neural network APVA for reducing the carrier vibrations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Pfabe, Mathias, e Christoph Woernle. "Reduction of Periodic Torsional Vibration using Centrifugal Pendulum Vibration Absorbers". PAMM 9, n.º 1 (dezembro de 2009): 285–86. http://dx.doi.org/10.1002/pamm.200910116.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Peinemann, Bernd. "Centrifugal pendulum vibration absorber — an alternative method of vibration reduction?" ATZ worldwide 103, n.º 4 (abril de 2001): 6–8. http://dx.doi.org/10.1007/bf03226435.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Susanto, Sri Nur Hari. "Desentralisasi Asimetris dalam Konteks Negara Kesatuan". Administrative Law and Governance Journal 2, n.º 4 (2 de novembro de 2019): 631–39. http://dx.doi.org/10.14710/alj.v2i4.631-639.

Texto completo da fonte
Resumo:
Abstract The correlation between decentralization and deconcentration on the concept of a unitary state and a federal state is not dichotomous but rather forms a matrix or continuum relationship. Within the continuum, it is possible to shift the pendulum swing both centripetally (concentrating or cone in a higher power) or centrifugal (spreading or dispersing into the power of smaller government units). In the practice of relations between the center and the regions in various countries, the pendulum swing of unitarism (unity) and federalism move in opposite directions. Keywords: Decentralization, Asymmetric, Republic of Indonesia Abstrak Korelasi hubungan desentralisasi dan dekonsentrasi antara konsep negara kesatuan dengan negara federal tidak bersifat dikhotomis yang saling berlawanan, melainkan membentuk sebuah hubungan matriks atau kontinum. Dalam rentang garis kontinum tadi, sangat dimungkinkan terjadinya pergeseran pendulum baik yang bersifat sentripetal (memusat atau mengerucut dalam kekuasaan yang lebih tinggi) maupun yang sentrifugal (menyebar atau pemencaran kedalam kekuasaan unit pemerintahan yang lebih kecil). Dalam praktik hubungan antara pusat dan daerah di berbagai negara, pendulum unitarisme (kesatuan) dan federalisme saling bergerak ke arah yang berlawanan. Kata Kunci: Desentralisasi, Asimetris, Negara Kesatuan Republik Indonesia.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Yoshida, Y. "Development of a Centrifugal Pendulum Absorber for Reducing Ship Superstructure Vibration". Journal of Vibration and Acoustics 111, n.º 4 (1 de outubro de 1989): 404–11. http://dx.doi.org/10.1115/1.3269876.

Texto completo da fonte
Resumo:
A vibration absorber (designated as the Super Dynamic Damper) for installation on ship superstructures, based on a tuned centrifugal pendulum concept, was developed through theoretical analyses followed by tests on units mounted on a vibrating platform and on actual ships. The tests confirmed the analytically estimated performance, and demonstrated that the vibrating amplitude would be reduced, to limit it to a constant low level independent of imparted exciting force. Results of analysis indicate the most important quality demanded of a tuned absorber to be the tuning accuracy. The tolerance permissible for the tuning accuracy is determined by the mass ratio: A smaller mass ratio calls for correspondingly higher tuning accuracy. The centrifugal pendulums are governed by Coulomb damping, which results in a damping behavior distinct from normal viscous damping. Both analysis and measurements attested to the importance of accurately controlling the absorber rotating speed, short of which the absorber risked becoming a vibration amplifier.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Shi, Chengzhi, Steven W. Shaw e Robert G. Parker. "Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers". Journal of Sound and Vibration 385 (dezembro de 2016): 55–68. http://dx.doi.org/10.1016/j.jsv.2016.08.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Lee, C. T., e S. W. Shaw. "THE NON-LINEAR DYNAMIC RESPONSE OF PAIRED CENTRIFUGAL PENDULUM VIBRATION ABSORBERS". Journal of Sound and Vibration 203, n.º 5 (junho de 1997): 731–43. http://dx.doi.org/10.1006/jsvi.1996.0707.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

ALSUWAIYAN, A. S., e S. W. SHAW. "PERFORMANCE AND DYNAMIC STABILITY OF GENERAL-PATH CENTRIFUGAL PENDULUM VIBRATION ABSORBERS". Journal of Sound and Vibration 252, n.º 5 (maio de 2002): 791–815. http://dx.doi.org/10.1006/jsvi.2000.3534.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Pennestrì, Ettore, Pier Paolo Valentini, Romualdo Paga e Marco Cirelli. "Performance evaluation of different centrifugal pendulum morphologies through multibody dynamics simulation". International Journal of Vehicle Performance 7, n.º 1/2 (2021): 61. http://dx.doi.org/10.1504/ijvp.2021.10035869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Cirelli, Marco, Romualdo Paga, Pier Paolo Valentini e Ettore Pennestrì. "Performance evaluation of different centrifugal pendulum morphologies through multibody dynamics simulation". International Journal of Vehicle Performance 7, n.º 1/2 (2021): 61. http://dx.doi.org/10.1504/ijvp.2021.113414.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Shaw, S. W., e S. Wiggins. "Chaotic Motions of a Torsional Vibration Absorber". Journal of Applied Mechanics 55, n.º 4 (1 de dezembro de 1988): 952–58. http://dx.doi.org/10.1115/1.3173747.

Texto completo da fonte
Resumo:
We consider large amplitude motions of a pendulum-type centrifugal vibration absorber which is used for the reduction of torsional oscillations in rotating machinery. The basic two degree-of-freedom model is shown to possess chaotic dynamics for certain ranges of parameter values. The method used is a variation of Melnikov’s method (cf., Guckenheimer and Holmes, (1983), Chapter 4) developed for slowly varying oscillators (Wiggins and Holmes (1987), Wiggins and Shaw (1988)).
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bubnov, V. A. "Improvement of the design and the manufacturing technology of rotors of pendulum centrifuges". Chemical and Petroleum Engineering 22, n.º 4 (abril de 1986): 162–64. http://dx.doi.org/10.1007/bf01149251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Cirelli, Marco, Emanuele Capuano, Pier Paolo Valentini e Ettore Pennestrì. "The tuning conditions for circular, cycloidal and epicycloidal centrifugal pendula: A unified cartesian approach". Mechanism and Machine Theory 150 (agosto de 2020): 103859. http://dx.doi.org/10.1016/j.mechmachtheory.2020.103859.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Cirone, M. A., G. Metikas e W. P. Schleicha. "Unusual Bound or Localized States". Zeitschrift für Naturforschung A 56, n.º 1-2 (1 de fevereiro de 2001): 48–60. http://dx.doi.org/10.1515/zna-2001-0109.

Texto completo da fonte
Resumo:
Abstract We summarize unusual bound or localized states in quantum mechanics. Our guide through these intriguing phenomena is the classical physics of the upside-down pendulum, taking advantage of the analogy between the corresponding Newton’s equation of motion and the time independent Schrödinger equation. We discuss the zero-energy ground state in a three-dimensional, spatially oscillating, potential. Moreover, we focus on the effect of the attractive quantum anti-centrifugal potential that only occurs in a two-dimensional situation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Song, Seong-Young, Soon-Cheol Shin e Gi-Woo Kim. "Torsional Vibration Isolation Performance Evaluation of Centrifugal Pendulum Absorbers for Clutch Dampers". Transactions of the Korean Society for Noise and Vibration Engineering 26, n.º 4 (20 de agosto de 2016): 436–42. http://dx.doi.org/10.5050/ksnve.2016.26.4.436.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Jang, Yongho, Suresh Kumar Jayachandran e Sungkoo Lee. "Study on Centrifugal Pendulum DMF Performance in Automotive Application during the Driving". Transactions of the Korean Society of Automotive Engineers 27, n.º 10 (1 de outubro de 2019): 771–76. http://dx.doi.org/10.7467/ksae.2019.27.10.771.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Lee, Sungkoo, Suresh Kumar Jayachandran, Yongho Jang e Dongsoo Lee. "Torsional Filtration Improvement with Centrifugal Pendulum DMF in Rear Wheel Drive System". International Journal of Automotive Technology 20, n.º 5 (10 de agosto de 2019): 917–22. http://dx.doi.org/10.1007/s12239-019-0085-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Mayet, J., e H. Ulbrich. "First-order optimal linear and nonlinear detuning of centrifugal pendulum vibration absorbers". Journal of Sound and Vibration 335 (janeiro de 2015): 34–54. http://dx.doi.org/10.1016/j.jsv.2014.09.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Shi, Chengzhi, Robert G. Parker e Steven W. Shaw. "Tuning of centrifugal pendulum vibration absorbers for translational and rotational vibration reduction". Mechanism and Machine Theory 66 (agosto de 2013): 56–65. http://dx.doi.org/10.1016/j.mechmachtheory.2013.03.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Zhang, Yi, Guangqiang Wu e Guoqiang Zhao. "Effects of gravity of centrifugal pendulum vibration absorber on its damping performance". International Journal of Vehicle Performance 1, n.º 1 (2021): 1. http://dx.doi.org/10.1504/ijvp.2021.10040313.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Sharif-Bakhtiar, M., e S. W. Shaw. "Effects of Nonlinearities and Damping on the Dynamic Response of a Centrifugal Pendulum Vibration Absorber". Journal of Vibration and Acoustics 114, n.º 3 (1 de julho de 1992): 305–11. http://dx.doi.org/10.1115/1.2930262.

Texto completo da fonte
Resumo:
The nonlinear dynamic response of a centrifugal pendulum vibration absorber with damping in both the primary system and the pendulum is analyzed using the methods of harmonic balance and Floquet theory. Periodic solutions are approximated by the first harmonic of the response and it is shown that for low and moderate response amplitudes the resulting frequency response curves agree well with results from simulations of the full nonlinear equations of motion. Particular attention is paid to the response at the anti-resonance frequency, that is, the operating frequency for which the absorber is tuned. Cases are demonstrated for which there exists more than one stable steady-state periodic motion of the system at the anti-resonance frequency; this particular property of the system is due to nonlinear effects and cannot be captured through the traditional linear analysis. Furthermore, it is shown that for certain ranges of parameter values the only stable periodic response of the system at the anti-resonance frequency is one of large amplitude, and it cannot be predicted by linear analysis. The effects of system parameters on the shifting of the anti-resonance frequency and on the corresponding carrier amplitude are also considered.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Geist, Bruce, Venkatanarayanan Ramakrishnan, Pradeep Attibele e William Resh. "Precision requirements for the bifilar hinge slots of a centrifugal pendulum vibration absorber". Precision Engineering 52 (abril de 2018): 1–14. http://dx.doi.org/10.1016/j.precisioneng.2017.08.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Demeulenaere, Bram, Pieter Spaepen e Joris De Schutter. "Input torque balancing using a cam-based centrifugal pendulum: design procedure and example". Journal of Sound and Vibration 283, n.º 1-2 (maio de 2005): 1–20. http://dx.doi.org/10.1016/j.jsv.2004.03.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Demeulenaere, B., P. Spaepen e J. De Schutter. "Input torque balancing using a cam-based centrifugal pendulum: design optimization and robustness". Journal of Sound and Vibration 283, n.º 1-2 (maio de 2005): 21–46. http://dx.doi.org/10.1016/j.jsv.2004.04.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Gomez, Erik R., Ines Lopez Arteaga e Leif Kari. "Normal-force dependant friction in centrifugal pendulum vibration absorbers: Simulation and experimental investigations". Journal of Sound and Vibration 492 (fevereiro de 2021): 115815. http://dx.doi.org/10.1016/j.jsv.2020.115815.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

NISHIMURA, Keisuke, Takashi IKEDA e Yuji HARATA. "502 Vibration Suppression of Torsional Rotating Shafts Using Multiple Centrifugal Pendulum Vibration Absorbers". Proceedings of Conference of Chugoku-Shikoku Branch 2015.53 (2015): _502–1_—_502–2_. http://dx.doi.org/10.1299/jsmecs.2015.53._502-1_.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Sharif-Bakhtiar, M., e S. W. Shaw. "The dynamic response of a centrifugal pendulum vibration absorber with motion-limiting stops". Journal of Sound and Vibration 126, n.º 2 (outubro de 1988): 221–35. http://dx.doi.org/10.1016/0022-460x(88)90237-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

GOTO, Akira, Takahiro RYU, Takashi NAKAE e Kenichiro MATSUZAKI. "Fundamental study of optimum path of centrifugal pendulum vibration absorber in automatic transmission". Proceedings of the Dynamics & Design Conference 2018 (2018): 205. http://dx.doi.org/10.1299/jsmedmc.2018.205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Cirelli, Marco, Mattia Cera, Ettore Pennestrì e Pier Paolo Valentini. "Nonlinear design analysis of centrifugal pendulum vibration absorbers: an intrinsic geometry-based framework". Nonlinear Dynamics 102, n.º 3 (31 de outubro de 2020): 1297–318. http://dx.doi.org/10.1007/s11071-020-06035-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Alsuwaiyan, Abdullah S., e Steven W. Shaw. "Non-synchronous and Localized Responses of Systems of Identical Centrifugal Pendulum Vibration Absorbers". Arabian Journal for Science and Engineering 39, n.º 12 (14 de novembro de 2014): 9205–17. http://dx.doi.org/10.1007/s13369-014-1464-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Vidmar, Brendan J., Brian F. Feeny, Steven W. Shaw, Alan G. Haddow, Bruce K. Geist e Nathan J. Verhanovitz. "The effects of Coulomb friction on the performance of centrifugal pendulum vibration absorbers". Nonlinear Dynamics 69, n.º 1-2 (30 de dezembro de 2011): 589–600. http://dx.doi.org/10.1007/s11071-011-0289-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Nishimura, Keisuke, Takashi Ikeda e Yuji Harata. "Localization phenomena in torsional rotating shaft systems with multiple centrifugal pendulum vibration absorbers". Nonlinear Dynamics 83, n.º 3 (20 de outubro de 2015): 1705–26. http://dx.doi.org/10.1007/s11071-015-2441-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia