Literatura científica selecionada sobre o tema "PLGA"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "PLGA".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "PLGA"
Li, Qing, Yiling Zhang, Jingbing Li, Hao Wang, Hui Lu, Honghao Fan e Gang Zheng. "Stimulatory effects of poly-para-dioxanone, poly L-lactic acid, polycaprolactone, and poly(lactic-co-glycolic acid)/PLLA in rats". Materials Express 9, n.º 8 (1 de novembro de 2019): 962–69. http://dx.doi.org/10.1166/mex.2019.1582.
Texto completo da fonteJeong, Jieun, Sangsoo Yoon, Xin Yang e Young Jun Kim. "Super-Tough and Biodegradable Poly(lactide-co-glycolide) (PLGA) Transparent Thin Films Toughened by Star-Shaped PCL-b-PDLA Plasticizers". Polymers 15, n.º 12 (8 de junho de 2023): 2617. http://dx.doi.org/10.3390/polym15122617.
Texto completo da fonteTaşkor Önel, Gülce. "Synthesis of L-ornithine- and L-glutamine-Linked PLGAs as Biodegradable Polymers". Polymers 15, n.º 19 (5 de outubro de 2023): 3998. http://dx.doi.org/10.3390/polym15193998.
Texto completo da fonteDenning, G. M. "IL-4 and IFN-gamma synergistically increase total polymeric IgA receptor levels in human intestinal epithelial cells. Role of protein tyrosine kinases." Journal of Immunology 156, n.º 12 (15 de junho de 1996): 4807–14. http://dx.doi.org/10.4049/jimmunol.156.12.4807.
Texto completo da fonteRezende, Camila A. de, e Eliana Ap R. Duek. "Blendas de poli (ácido lático-co-ácido glicólico)/ poli (ácido lático): degradação in vitro". Polímeros 13, n.º 1 (janeiro de 2003): 36–44. http://dx.doi.org/10.1590/s0104-14282003000100009.
Texto completo da fonteCardoso, M. Margarida, Inês N. Peca, Telma Lopes, Rui Gardner e A. Bicho. "Double-Walled Poly-(D,L-lactide-co-glycolide) (PLGA) and Poly(L-lactide) (PLLA) Nanoparticles for the Sustained Release of Doxorubicin". Polymers 13, n.º 19 (23 de setembro de 2021): 3230. http://dx.doi.org/10.3390/polym13193230.
Texto completo da fonteK., Prakash Raj, Kathiresan K. e Pandian P. "A Review on Poly-Lactic-Co-Glycolic Acid as a Unique Carrier for Controlled and Targeted Delivery Drugs". Journal of Evolution of Medical and Dental Sciences 10, n.º 27 (5 de julho de 2021): 2034–41. http://dx.doi.org/10.14260/jemds/2021/416.
Texto completo da fontePek, Y. Shona, Pemakorn Pitukmanorom e Jackie Y. Ying. "Sustained release of bupivacaine for post-surgical pain relief using core–shell microspheres". J. Mater. Chem. B 2, n.º 46 (2014): 8194–200. http://dx.doi.org/10.1039/c4tb00948g.
Texto completo da fonteDutta, D., C. Fauer, K. Hickey, M. Salifu e S. E. Stabenfeldt. "Tunable delayed controlled release profile from layered polymeric microparticles". Journal of Materials Chemistry B 5, n.º 23 (2017): 4487–98. http://dx.doi.org/10.1039/c7tb00138j.
Texto completo da fonteWen, He, Litian Qu, Yu Zhang, Beilei Xu, Shiqi Ling, Xiaochun Liu, Yang Luo, Da Huo, Wei Li e Xu Yao. "A Dendritic Cells-Targeting Nano-Vaccine by Coupling Polylactic-Co-Glycolic Acid-Encapsulated Allergen with Mannan Induces Regulatory T Cells". International Archives of Allergy and Immunology 182, n.º 9 (2021): 777–87. http://dx.doi.org/10.1159/000512872.
Texto completo da fonteTeses / dissertações sobre o assunto "PLGA"
Moura, Renata Kely de Paulo. "Avaliação in vitro das características de liberação de indometacina a partir de dispositivos oculares implantáveis". Universidade Federal da Paraíba, 2010. http://tede.biblioteca.ufpb.br:8080/handle/tede/6857.
Texto completo da fonteCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The anatomy and physiology of the eye, together with its protective barriers represent challenges to effective ocular drug delivery systems. The pharmacological treatment of eye diseases had been limited to conventional drug formulations, which are not satisfactory for diseases affecting the posterior segment of the eye. The delivery of therapeutic doses at tissues from the posterior segment in order to minimize adverse systemic and regional effects is the main goal in the treatment of ocular diseases. With this aim, several studies have been conducted to develop new ocular drug delivery systems, such as those involving ocular implants. These implants are prepared using a variety of different polymers that can be either biodegradable or non-biodegradable. Polymers derived from lactic and glycolic acid have revealed to be promising materials for the formulation of ocular implants, mainly due to their biocompatibility and biodegradability. In this study, two different biodegradable indomethacin implants formulated based on a copolymer of lactic/glicolic acid (PLGA 50:50) and D,L-lactic acid (D,L-PLA) were characterized by differential scanning calorimetry (DSC), in vitro release using dissolution apparatus and scleral diffusion (from rabit´s eye) using Franz chambers. The study was done in collaboration with 3T Biopolymers (São Paulo, Brazil) that provided samples of the polymers and implants for analyses. The results of the validation of the HPLC method for indomethacin quantification were within the limits set forth by Brazilian legislation (RE 899, 2003, ANVISA). The results of DSC analysis revealed absence of any evidence of physico-chemical interactions between the drug and polymer. The suppression of the indomethacin melting peak is probably due to changes from the crystalline to the amorphous state of the drug following lyophilization or by dilution effects. Preliminary in vitro release data revealed a triphasic profile for indomethacin release from the PLGA-based implants and a biphasic one for the PLA implants. The implants formulated with PLGA promoted a faster release of indomethacin (103.64%) compared with implants formulated with PLA (49.9%) during the thirty days of the experiment. The release profile of indomethacin was determined by the rate of degradation of polymers, which also determined the scleral diffusion of indomethacin from PLGA and PLA (1.7 x 10-5 cm / s and 0.24 x 10-5 cm / s, respectively). The scleral diffusion experiments using Franz difusion chambers have shown that the rabit sclera is permeable to indomethacin and polarized light microscopy revealed that the structure of the scleral collagen fibers were not significantly altered during the diffusion experiments. The drug-release systems studied were able to release indomethacin in a sustained fashion, serving as a model for the formulation of indomethacin implants that could be used in the future for the treatment of ocular diseases such as the cystoid macular edema.
A anatomia e fisiologia do olho e suas barreiras protetoras representam um desafio para o desenvolvimento de sistemas de transporte de drogas oftálmicas efetivos. O tratamento farmacológico de doenças oculares tem se limitado às formas convencionais de administração que não são satisfatórias para o tratamento de doenças que acometem o segmento posterior do bulbo do olho. O transporte de doses terapêuticas para os tecidos do segmento posterior do olho, que minimize os efeitos colaterais sistêmicos e locais, é o principal objetivo no tratamento de doenças oculares. Visando atingir este objetivo, estudos têm sido feitos no sentido de desenvolver novos sistemas de liberação de fármacos para o olho, entre estes estão os implantes. Esses implantes são preparados a partir de diferentes polímeros, os quais podem ser biodegradáveis ou não biodegradáveis. Os polímeros derivados dos ácidos lático e glicólico têm se revelado bastante promissores devido, principalmente, às suas características de biocompatibilidade e biodegradabilidade. Neste trabalho, dois diferentes implantes de indometacina formulados a partir do copolímero ácido lático / ácido glicólico (PLGA 50:50) e do polímero derivado do ácido D,L-lático (PLA), através de liofilização da mistura polímero-fármaco, foram fornecidos pela empresa 3T Biopolímeros (São Paulo - SP) e avaliados através de DSC, estudos de liberação in vitro usando aparato de dissolução e estudos de difusão através de esclera de coelho utilizando câmaras de Franz. Os resultados da validação do método CLAE para quantificação da indometacina apresentaram-se dentro dos limites estabelecidos pela legislação brasileira (Resolução RE 899, 2003, ANVISA). As análises de DSC mostraram a ausência aparente de interações químicas e físicas entre o fármaco e os polímeros, sendo sugerido que o desaparecimento do pico de fusão da indometacina tenha ocorrido pela amorfização do fármaco durante o processo de liofilização ou pela diluição do fármaco no polímero. Os estudos preliminares de liberação in vitro demonstraram um perfil trifásico para os implantes formulados com PLGA e um perfil bifásico para àqueles formulados com PLA. Os implantes formulados com PLGA promoveram uma liberação mais rápida da indometacina (103,64%) quando comparado com os implantes formulados com PLA (49,9%) durante os trinta dias de experimento. O perfil de liberação da indometacina foi determinado pela velocidade de degradação dos polímeros, que também determinou a difusão escleral da indometacina a partir do PLGA e do PLA (1,7 x 10-5 cm/s e 0,24 x 10-5 cm/s, respectivamente). Os estudos de difusão escleral mostraram que a esclera de coelho é permeável à indometacina e a microscopia de luz polarizada mostrou que a estrutura das fibras colágenas da esclera não foram significativamente alteradas durante o estudo de difusão nas câmaras de Franz. Os sistemas de liberação de fármacos avaliados foram capazes de liberar a indometacina de forma prolongada, servindo como um modelo para formulação de implantes de indometacina que podem ser futuramente utilizados para tratamento de doenças como edema macular cistóide.
Banerjee, Abhishek. "Functionalizable Biodegradable Polyesters for Drug Delivery Applications". University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1335240206.
Texto completo da fonteFriedrich, Nadja. "Integration dermaler Fibroblasten in PLGA-Scaffolds". Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-130943.
Texto completo da fonteBode, Corinna. "PLGA implants for ocular drug delivery". Thesis, Lille 2, 2019. http://www.theses.fr/2019LIL2S008.
Texto completo da fonteUntil today, the treatment of posterior eye diseases, such as age-related macular degeneration, diabetic retinopathy and uveitis, remains challenging. The eye with its different ocular barriers is well protected from external factors. Those barriers also reduce the bioavailability of drugs to the vitreous. After a topical administration, only a limited amount (0.001 – 0.0004 %) reaches the vitreous. This is caused by for example reflexive blinking, tear dilution and a low corneal permeability of the drug. After a systemic or oral administration, the blood-aqueous and the blood-retinal barrier hinder the drug from entering and only around 2 % of the administered drug is found in the vitreous. In order to reach therapeutic concentrations, a high dose has to be given which in turn increases the risk for systemic side effects. The most efficient way to treat posterior diseases remains the intravitreal injection. However, small lipophilic molecules like dexamethasone can easily diffuse through the retina and the blood-ocular barriers and, thus, have a limited half-life of just a few hours. Since many of the posterior diseases are chronic, a frequent intravitreal injection would be necessary. Every intravitreal injection bears the risks for retinal detachment, hemorrhage, and other side effects. Biodegradable implants for intravi-treal administration can prolong the drug release and in turn decrease the side effects. Poly(lac-tic-co-glycolic acid) (PLGA) is a widely used polymer that is biocompatible and biodegrada-ble. It can also sustain the drug release from a few days up to several months. In this study, in-situ forming implants (ISFI) and pre-formed implants prepared via hot melt extrusion were studied in depth. The aim of this work was (i) to study the impact of the volume of the release medium, polymer type and concentration as well as drug content of different ISFI, (ii) to eval-uate the drug release, swelling and degradation behavior of pre-formed implants prepared with different drug loadings and polymer types, (iii) to visualize the drug release and water uptake of ISFI and pre-formed implants using colored model drugs and (iv) to investigate the effect of varying amounts of different additives on key features of ISFI. This knowledge can help to manufacture implants with different release profiles. Our studies show that ISFI are rather ro-bust regarding different volumes of the vitreous humor that could be encountered in vivo. How-ever, the polymer molecular weight and polymer concentration have a strong influence on the morphology and swelling behavior of the implants. Consequently, the degradation and drug release are affected. For pre-formed implants the swelling “orchestrates” the drug release. In the beginning only limited amounts of water can diffuse into the implants. Thus, only insignif-icant amounts of the drug are dissolved and can be released. When the PLGA starts to degrade, the polymer becomes more hydrophilic and bigger amounts of water can penetrate. This poly-mer swelling facilitates drug dissolution and diffusion and initiates the drug release. The studies using colored model drugs corroborate the role of water penetration and drug dissolution for pre-formed implants. Concerning ISFI, it visualized the importance of the polymer concentra-tion on the resulting inner implant structure and consequently the water uptake and drug release. The swelling behavior and morphology of ISFI could also be significantly altered using differ-ent additives. The overall effect on the drug release was limited
Li, Zhongxuan. "Co-delivery of Two Growth Factors From Combined PLGA and PLLA/PCL Microsphere Scaffolds for Spinal Cord Injury Repairs". Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31200.
Texto completo da fonteMariño, Laura Victoria Español. "Aplicação da eletroforese capilar e cromatografia líquida de alta eficiência para a quantificação da dexametasona e diclofenaco em nanosuspensão". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/9/9139/tde-28052015-084712/.
Texto completo da fonteThe great challenges of contemporary medicine emphasize the need for intensive research to develop new treatments for many chronic diseases, such as the rheumatic, to be effective, safe and of good quality. One of the new tools for the development of new drugs is the nanotechnology, which in recent years has increased its application in the pharmaceutical area contemplating a growing optimism about its potential use to get better opportunities for diagnosis and more effective therapies. In the present work were encapsulated two anti-inflammatories in nanoparticulate systems, nanospheres poly-lactic co-glycolic acid (PLGA), the technique used allows the encapsulation of hydrophilic and hydrophobic compounds in the same polymer nanoparticle, diclofenac sodium (DS) and dexamethasone (DX), respectively, obtaining nanoparticles with potential for the treatment of chronic inflammatory diseases. For the development of nanospheres the technique used was emulsion / solvent evaporation. The nanospheres were characterized by zeta potential infrared, particle size, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and pH. The encapsulation of the drug (diclofenac sodium and dexamethasone) in the nanospheres was performed by previously validated analytical techniques high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). In the best formulation was achieved encapsulation 51.4 ± 5.5% for diclofenac and 66.9 ± 8.4 for dexamethasone
Sun, Yanqi. "Studies of PLGA Nanoparticles for Pharmaceutical Applications". Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9232.
Texto completo da fonteSchardosim, Mariane Giacomini. "Confecção de estruturas tubulares permeáveis de PLGA". Pontifícia Universidade Católica do Rio Grande do Sul, 2012. http://hdl.handle.net/10923/3335.
Texto completo da fontePeripheral nerve injury accident is a common type of lesion that can cause loss of mobility and decrease the quality of life. Despite advances in the biomedical area, there are few cases where there is complete functional recovery of a damaged nerve. The application of biodegradable polymers such as poly(lactide-co-glycolide) (PLGA), shows a viable alternative of treatment in peripheral nerves injuries for presenting mechanical strength, biocompatibility and controlled degradation, being also an excellent material for drug delivery. A PLGA scaffold should be porous with pore sizes on the order of micro-and nanometer, which offers the possibility to insert growth factors, promoting a constant release of these biological structures. The aim of this research is to produce porous scaffolds of PLGA. This was achieved by dissolving the polymer in chloroform, adding a porogenic compound. A titanium rod with 2mm in diameter was deeped in the suspension obtained and dried in a hood, obtaining a layer of PLGA / porogen agent on the surface of the rod. In sequence, the rod was immersed in a solution of PLGA with chloroform. After dried for 2 hours in a hood, the titanium rods were submerged in deionized water for 48 hours, during which the water was changed every 8 hours in order to remove the porogenic agent. After this process, the tubular structures formed were easily removed from the rods. Finally, the prepared tubes were divided into groups and treated with different concentrations of sodium hydroxide, to create pores in the order of nanometers, and subsequently vacuum dried for 48 hours. The structures obtained were characterized by XRD, FTIR, SEM and the in vitro degradation was monitored by GPC.
Danos a nervos periféricos são formas comuns de lesões que podem causar perda de mobilidade e diminuir a qualidade de vida. Apesar dos avanços no campo biomédico, existem poucos casos em que há recuperação funcional completa de um nervo danificado. A aplicação de polímeros biodegradáveis tais como PLGA, apresenta uma alternativa viável no tratamento de lesões de nervos periféricos por possuir resistência mecânica, biocompatibilidade e degradação controlada. Uma matriz de PLGA deve apresentar poros na ordem de micrômetros e nanômetros, oferecendo a possibilidade de inclusão de fatores de crescimento e possivelmente promovendo uma libertação constante destas estruturas biológicas. O objetivo desta pesquisa é produzir matrizes porosas de PLGA. Isto foi realizado através da dissolução do polímero em clorofórmio, seguida da adição de um composto porogênico. Uma haste de titânio com 2mm de diâmetro foi imersa na suspensão obtida e quando retirada, foi seca em capela, obtendo uma camada de PLGA/agente porogênico na superfície da haste. Na sequência, a haste foi imersa em uma solução de PLGA com clorofórmio. Após seca durante 2h em capela, as hastes de titânio foram submersas em água deionizada durante 48h, durante as quais, a água foi trocada a cada 8h, para remoção do agente porogênico. Após este processo, as estruturas tubulares formadas são facilmente removidas das hastes. Finalmente, os tubos confeccionados foram divididos em grupos, e tratados com diferentes concentrações de hidróxido de sódio, para criação de poros na ordem de nanômetros, sendo, subsequentemente, secos em forno a vácuo durante 48h. As estruturas obtidas foram caracterizadas por XRD, FTIR, MEV e a degradação in vitro foi acompanhada por GPC.
Maria, Adriana Del Monaco De. "Estudo do revestimento de modelos de stents coronários biorreabsorvíveis de PLLA com PLDLA/PLGA e ácido hialurônico". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/98/98131/tde-04102017-140345/.
Texto completo da fonteCoronary artery disease has been world´s leading cause of death and angioplasty stent implantation is an important strategy in these cases. Studies indicate that the biodegradability, immobilization of antiproliferatives and bioactive molecules in stents are characteristics of future generations of these medical devices. Amongst them, hyaluronic acid (HA) contributes to the decrease of the aggregation and proliferation of cells between artery layers and implanted device. For this purpose, poly (L-lactic acid) (PLLA) bioresorbable coronary stents with HA grafting in poly (lactic acid-co-glycolic acid) (PLGA) and poly (LD- (PLDLA) were developed. The models were characterized as their thermal, mechanical and surface properties. PLDLA and PLGA with adipic dihydrazide (ADH) modified HA grafting presented more hydrophilic surface characteristics, ideal as coating material of this devices. This project allowed the development of bioresorbable physical models with similar dimensions to coronary stents, made of PLLA, coated with PLGA and PLDLA with hyaluronic acid grafting, stable to ultraviolet radiation and plasma sterilization with hydrogen peroxide processes.
El, Abbouni Sarah. "Microencapsulation of LL-37 Antimicrobial Peptide in PLGA". Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/235.
Texto completo da fonteLivros sobre o assunto "PLGA"
Joseph, Jamie William. Oral delivery of glucagon-like peptide-1 using PLGA-COOH microspheres. Ottawa: National Library of Canada, 1999.
Encontre o texto completo da fonteBeernaert, Marie-Aude. Repentis et collaborateurs de justice dans le système pénal: Analyse comparée et critique. Bruxelles: Bruylant, 2002.
Encontre o texto completo da fonteWeigend, Thomas. Absprachen in ausländischen Strafverfahren: Eine rechtsvergleichende Untersuchung zu konsensualen Elementen im Strafprozess. Freiburg i. Br: Max-Planck-Institut für Ausländisches und Internationales Strafrecht, 1990.
Encontre o texto completo da fontePhiradāusa, Śāhyāda. Plega. Kalakātā: Baṅga Basundhāra, 1996.
Encontre o texto completo da fonteFlynn, Asher, e Arie Freiberg. Plea Negotiations. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92630-8.
Texto completo da fonteRoden, Katie. Plag ue. Brookfield, Conn: Copper Beech Books, 1996.
Encontre o texto completo da fonteWaugh, Hillary. Prisoner's plea. Bath, England: Chivers Press, 1990.
Encontre o texto completo da fonteHerman, G. Nicholas. Plea bargaining. 2a ed. [Charlottesville, Va.]: LexisNexis, 2004.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "PLGA"
Marques, Shirleen Miriam, e Lalit Kumar. "PKPD of PLGA-PEG-PLGA Copolymeric Micelles". In Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems, 273–92. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83395-4_15.
Texto completo da fonteRosales-Mendoza, Sergio, e Omar González-Ortega. "PLGA-Based Mucosal Nanovaccines". In Nanovaccines, 61–103. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31668-6_4.
Texto completo da fonteRosa, Giuseppe De, e Giuseppina Salzano. "PLGA Microspheres Encapsulating siRNA". In RNA Interference, 43–51. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1538-5_4.
Texto completo da fonteKawashima, Yoshiaki. "Application of PLGA NSs to Cosmetics". In Spherical Crystallization as a New Platform for Particle Design Engineering, 99–106. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6786-1_7.
Texto completo da fonteJoy, Jomon, e Sabu Thomas. "PLGA-Based Nanoparticles for Cancer Therapy". In Nanoparticles in Polymer Systems for Biomedical Applications, 23–56. Oakville, Canada ; Waretown, NJ : Apple Academic Press, [2019]: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351047883-2.
Texto completo da fonteZhang, Siyao, David James Young e Xian Jun Loh. "Chapter 2. Thermogelling PLGA-based Copolymers". In Biomaterials Science Series, 23–39. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012676-00023.
Texto completo da fonteChaurasiya, Akash, Parameswar Patra, Pranathi Thathireddy e Amruta Gorajiya. "PLGA-Based Micro- and Nano-particles". In Micro- and Nanotechnologies-Based Product Development, 83–94. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003043164-6.
Texto completo da fonteGultekin, Yakup, Tamer Tekin, Meryem Kocas, Yılmaz Capan e Adem Sahin. "PLGA-Based Nanomaterials for Cancer Therapy". In Nanotechnology for Biomedical Applications, 263–84. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7483-9_13.
Texto completo da fonteAtanasov, Gjorgji, Iliyan N. Kolev, Ognyan Petrov e Margarita D. Apostolova. "Synthesis of PLGA-PEG-PLGA Polymer Nano-Micelles – Carriers of Combretastatin-Like Antitumor Agent 16Z". In NATO Science for Peace and Security Series B: Physics and Biophysics, 449–58. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2018-0_36.
Texto completo da fonteRen, Ling, Jin Wang, Jia Ju Tang, Ch J. Pang, M. Maitz e Nan Huang. "Biological Evaluation of Sirolimus-Loaded PLGA Films". In Advanced Biomaterials VII, 837–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-436-7.837.
Texto completo da fonteTrabalhos de conferências sobre o assunto "PLGA"
Lee, So-i., Joung Soon Park, Min Kyu Park e Ja Kyung Koo. "Physical Property of Absorbable Suture PLLA I PLLA II PLGA PDO". In Green and Smart Technology 2015. Science & Engineering Research Support soCiety, 2015. http://dx.doi.org/10.14257/astl.2015.120.02.
Texto completo da fonteWeigum, Shannon E., Melissa Sutton, Eugenia Barnes, Sarah Miller e Tania Betancourt. "Targeting hepatocellular carcinoma with aptamer-functionalized PLGA/PLA-PEG nanoparticles". In SPIE NanoScience + Engineering, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2014. http://dx.doi.org/10.1117/12.2062283.
Texto completo da fonteBenammar, Sarra, Fatima Mraiche, Jensa Mariam Joseph e Katerina Gorachinova. "Glucose and Transferrin Liganded PLGA Nanoparticles Internalization in Non-Small Lung Cancer Cells". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0227.
Texto completo da fonteRamalho, M. J., J. A. Loureiro, B. Gomes, M. F. Frasco, M. A. N. Coelho e M. C. Pereira. "PLGA nanoparticles for calcitriol delivery". In 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG). IEEE, 2015. http://dx.doi.org/10.1109/enbeng.2015.7088884.
Texto completo da fonteWang, Gou-Jen, e Cheng-Chih Hsueh. "Fabrication of PLGA Microstructures Made Up of Circular Microchannels Using Soft Lithography". In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34321.
Texto completo da fonteYalcin, Huseyin, Hissa Al-Thani e Samar Shurbaji. "Development and In Vivo Testing of Smart Nanoparticles for Enhanced Anti-Cancer Activity and Reduced Cardiotoxicity Associated with Tyrosine Kinase Inhibitors". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0088.
Texto completo da fonteKrishnakumar, D., e K. S. Jaganathan. "Development of nasal HPV vaccine formulations". In 16th Annual International Conference RGCON. Thieme Medical and Scientific Publishers Private Ltd., 2016. http://dx.doi.org/10.1055/s-0039-1685403.
Texto completo da fonteHosayni, L., F. Ganji e E. Khodaverdi. "Effects of reaction condition and feed composition on thermo-gelling behavior of PLGA-PEG-PLGA". In 2012 19th Iranian Conference of Biomedical Engineering (ICBME). IEEE, 2012. http://dx.doi.org/10.1109/icbme.2012.6519669.
Texto completo da fonteJayasuriya, A. Champa, Elisabeth Michels e Nabil A. Ebraheim. "Demineralized Bone Matrix Incorporated PLGA Matrices". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14796.
Texto completo da fonteRahman, Shekh, e Narayan Bhattarai. "Magnesium Oxide Based PLGA/Chitosan Microparticles for Controlled Release Study". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52143.
Texto completo da fonteRelatórios de organizações sobre o assunto "PLGA"
Hassan, Mozan, Abbas Khaleel, Sherif Karam, Ali Al-Marzouqi, Ihtesham Ur Rehman e Sahar Mohsin. Bacterial inhibition and osteogenic potentials of Sr/Zn co-doped nano-hydroxyapatite-PLGA composite scaffold for bone tissue engineering applications. Peeref, junho de 2023. http://dx.doi.org/10.54985/peeref.2306p7862520.
Texto completo da fonteOimoen, Daniel C. PLGR Accuracy Evaluation. Fort Belvoir, VA: Defense Technical Information Center, junho de 1994. http://dx.doi.org/10.21236/ada281291.
Texto completo da fonteMiller, Marc. PLA Missions Beyond Taiwan. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2008. http://dx.doi.org/10.21236/ada487962.
Texto completo da fonteBurt, Andrew, e Daniel Geer, Jr. A Plea: The Case for Digital Environmentalism. Center for Security and Emerging Technology, novembro de 2022. http://dx.doi.org/10.51593/2022ca005.
Texto completo da fonteDreyer, June T. The Pla and the Kosovo Conflict. Fort Belvoir, VA: Defense Technical Information Center, maio de 2000. http://dx.doi.org/10.21236/ada382839.
Texto completo da fontePapachristou, Christos A. Structured Microcontroller Design Using PLA Firmware. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1985. http://dx.doi.org/10.21236/ada164255.
Texto completo da fonteBarefoot, Susan F., Bonita A. Glatz, Nathan Gollop e Thomas A. Hughes. Bacteriocin Markers for Propionibacteria Gene Transfer Systems. United States Department of Agriculture, junho de 2000. http://dx.doi.org/10.32747/2000.7573993.bard.
Texto completo da fonteVega, Richard Manuel, Edward J. Parm, Patrick J. Griffin e David W. Vehar. Neutron Reference Benchmark Field Specifications: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Environment (ACRR-PLG-CC-32-CL). Office of Scientific and Technical Information (OSTI), julho de 2015. http://dx.doi.org/10.2172/1191880.
Texto completo da fonteRudell, Richard L. Multiple-Valued Logic Minimization for PLA Synthesis. Fort Belvoir, VA: Defense Technical Information Center, junho de 1986. http://dx.doi.org/10.21236/ada606736.
Texto completo da fonteDuffin, Matthew L. Plea-Bargaining in International Criminal Tribunals: A Legitimate and Necessary Tool. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1999. http://dx.doi.org/10.21236/ada370523.
Texto completo da fonte