Artigos de revistas sobre o tema "Polystyrene nanoparticle"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Polystyrene nanoparticle".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Fang, Jingyue, Xinxing Li, Wenke Xie e Kehui Sun. "A Novel Fabrication of Single Electron Transistor from Patterned Gold Nanoparticle Array Template-Prepared by Polystyrene Nanospheres". Nanomaterials 12, n.º 18 (7 de setembro de 2022): 3102. http://dx.doi.org/10.3390/nano12183102.
Texto completo da fonteKhan, Madihah, Alyxandra Thiessen, I. Teng Cheong, Sarah Milliken e Jonathan G. C. Veinot. "Investigation of Silicon Nanoparticle-Polystyrene Hybrids". Alberta Academic Review 2, n.º 2 (15 de setembro de 2019): 49–50. http://dx.doi.org/10.29173/aar60.
Texto completo da fonteKim, Sanghee, Jaetae Seo, Roopchan Ramdon, Hyeon-Bong Pyo, Kyuho Song e Byoung Hun Kang. "Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection". Journal of Nanomaterials 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/693575.
Texto completo da fonteSabo, Y. T., D. E. Boryo, I. Y. Chindo e A. I. Habib. "Nanocomposites Transformed from Polystyrene Waste/Antimony, Barium and Nickel Oxides Nanoparticles with Improved Mechanical Properties". Journal of Applied Sciences and Environmental Management 25, n.º 11 (10 de fevereiro de 2022): 1921–25. http://dx.doi.org/10.4314/jasem.v25i11.11.
Texto completo da fonteXU, HAILONG, QIUYU ZHANG, HEPENG ZHANG, BAOLIANG ZHANG e CHANGJIE YIN. "THE SIMULATION OF POLYSTYRENE/NANOPARTICLES COMPOSITE MICROSPHERES USING DISSIPATIVE PARTICLE DYNAMICS". Journal of Theoretical and Computational Chemistry 12, n.º 02 (março de 2013): 1250111. http://dx.doi.org/10.1142/s0219633612501118.
Texto completo da fonteKudryashov, Andrey, Svetlana Baryshnikova, Sergey Gusev, Dmitry Tatarskiy, Ivan Lukichev, Nadezhda Agareva, Andrey Poddel’sky e Nikita Bityurin. "UV-Induced Gold Nanoparticle Growth in Polystyrene Matrix with Soluble Precursor". Photonics 9, n.º 10 (19 de outubro de 2022): 776. http://dx.doi.org/10.3390/photonics9100776.
Texto completo da fonteTsirikis, Peter, Kirsty Wilson, Ying Kong, Sue Xiang, Cordelia Selomulya e Magdalena Plebanski. "Differential antibody induction to surface textured silica nanoparticle adjuvants (VAC3P.1055)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 71.2. http://dx.doi.org/10.4049/jimmunol.194.supp.71.2.
Texto completo da fonteBartucci, Roberta, Alex Z. van der Meer, Ykelien L. Boersma, Peter Olinga e Anna Salvati. "Nanoparticle-induced inflammation and fibrosis in ex vivo murine precision-cut liver slices and effects of nanoparticle exposure conditions". Archives of Toxicology 95, n.º 4 (8 de fevereiro de 2021): 1267–85. http://dx.doi.org/10.1007/s00204-021-02992-7.
Texto completo da fonteChu, Liang-Kai, S. Ranil Wickramasinghe, Xianghong Qian e Andrew L. Zydney. "Retention and Fouling during Nanoparticle Filtration: Implications for Membrane Purification of Biotherapeutics". Membranes 12, n.º 3 (7 de março de 2022): 299. http://dx.doi.org/10.3390/membranes12030299.
Texto completo da fonteLi, Yunbo, Linlin Song e Yisha Qiao. "Spontaneous assembly and synchronous scan spectra of gold nanoparticle monolayer Janus film with thiol-terminated polystyrene". RSC Adv. 4, n.º 101 (2014): 57611–14. http://dx.doi.org/10.1039/c4ra10811f.
Texto completo da fonteNawaz, Qamar, e Y. Rharbi. "An Inquisitive into the Indirect Measurement and Comparison of the Viscosity of Nanoconfined Polystyrene Nanoparticles". Key Engineering Materials 510-511 (maio de 2012): 58–66. http://dx.doi.org/10.4028/www.scientific.net/kem.510-511.58.
Texto completo da fonteYacobi, Nazanin R., Lucas DeMaio, Jiansong Xie, Sarah F. Hamm-Alvarez, Zea Borok, Kwang-Jin Kim e Edward D. Crandall. "Polystyrene nanoparticle trafficking across alveolar epithelium". Nanomedicine: Nanotechnology, Biology and Medicine 4, n.º 2 (junho de 2008): 139–45. http://dx.doi.org/10.1016/j.nano.2008.02.002.
Texto completo da fonteFazlollahi, Farnoosh, Susanne Angelow, Nazanin R. Yacobi, Ronald Marchelletta, Alan S. L. Yu, Sarah F. Hamm-Alvarez, Zea Borok, Kwang-Jin Kim e Edward D. Crandall. "Polystyrene nanoparticle trafficking across MDCK-II". Nanomedicine: Nanotechnology, Biology and Medicine 7, n.º 5 (outubro de 2011): 588–94. http://dx.doi.org/10.1016/j.nano.2011.01.008.
Texto completo da fonteSherman, Robert L., e Warren T. Ford. "Semiconductor Nanoparticle/Polystyrene Latex Composite Materials". Langmuir 21, n.º 11 (maio de 2005): 5218–22. http://dx.doi.org/10.1021/la0468139.
Texto completo da fontePomposo, José A., Alaitz Ruiz de Luzuriaga, Agustín Etxeberria e Javier Rodríguez. "Key role of entropy in nanoparticle dispersion: polystyrene-nanoparticle/linear-polystyrene nanocomposites as a model system". Phys. Chem. Chem. Phys. 10, n.º 5 (2008): 650–51. http://dx.doi.org/10.1039/b714107f.
Texto completo da fonteStanglmair, Christoph, Frank Neubrech e Claudia Pacholski. "Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates". Zeitschrift für Physikalische Chemie 232, n.º 9-11 (28 de agosto de 2018): 1527–39. http://dx.doi.org/10.1515/zpch-2018-1132.
Texto completo da fonteRanoszek-Soliwoda, Katarzyna, Maria Girleanu, Beata Tkacz-Szczęsna, Marcin Rosowski, Grzegorz Celichowski, Martin Brinkmann, Ovidiu Ersen e Jaroslaw Grobelny. "Versatile Phase Transfer Method for the Efficient Surface Functionalization of Gold Nanoparticles: Towards Controlled Nanoparticle Dispersion in a Polymer Matrix". Journal of Nanomaterials 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/9058323.
Texto completo da fonteSalih, Sihama I. "DEVELOPMENT DESIRED PROPERTIES OF POLYSTYRENE NANO COMPOSITES BY ADDING POLYMERIC MODIFIERS". IRAQI JOURNAL FOR MECHANICAL AND MATERIALS ENGINEERING 19, n.º 2 (26 de maio de 2019): 207–23. http://dx.doi.org/10.32852/iqjfmme.v19i2.319.
Texto completo da fonteTAMAKI, KOICHI, e MASATSUGU SHIMOMURA. "FABRICATIONS OF LUMINESCENT POLYMERIC NANOPARTICLES CONTAINING LANTHANIDE (III) ION COMPLEXES". International Journal of Nanoscience 01, n.º 05n06 (outubro de 2002): 533–37. http://dx.doi.org/10.1142/s0219581x02000620.
Texto completo da fonteSabo, Y. T., D. E. A. Boryo, I. Y. Chindo e A. M. Auwal. "Nanocomposites transformed from polystyrene waste/antimony, barium and nickel oxides nanoparticles with improved thermal and electrical properties". Nigerian Journal of Chemical Research 26, n.º 2 (5 de fevereiro de 2022): 117–27. http://dx.doi.org/10.4314/njcr.v26i2.7.
Texto completo da fonteWatanabe, Kodai, Satoshi Katsuhara, Hiroaki Mamiya, Yukihiko Kawamura, Takuya Yamamoto, Kenji Tajima, Takuya Isono e Toshifumi Satoh. "Highly asymmetric lamellar nanostructures from nanoparticle–linear hybrid block copolymers". Nanoscale 12, n.º 31 (2020): 16526–34. http://dx.doi.org/10.1039/d0nr05209d.
Texto completo da fonteWang, Haixia, Rui Ma, Karin Nienhaus e G. Ulrich Nienhaus. "Protein Adsorption Onto Polystyrene Nanoparticles and its Effect on Nanoparticle Agglomeration". Biophysical Journal 118, n.º 3 (fevereiro de 2020): 625a. http://dx.doi.org/10.1016/j.bpj.2019.11.3368.
Texto completo da fonteLIAO, YUANBAO, JIAJIA WU, LING XU, FEI YANG, WENQING LIU, JUN XU, LIANGCAI WU, ZHONGYUAN MA e KUNJI CHEN. "FORMATION, STRUCTURE AND PROPERTIES OF HIGHLY ORDERED SUB-30-nm PHASE CHANGE MATERIALS (GST) NANOPARTICLE ARRAYS". Surface Review and Letters 17, n.º 04 (agosto de 2010): 405–10. http://dx.doi.org/10.1142/s0218625x10014259.
Texto completo da fonteMontes, Sarah, Agustín Etxeberria, Javier Rodriguez e Jose A. Pomposo. "Homogenization of Mutually Immiscible Polymers Using Nanoscale Effects: A Theoretical Study". Research Letters in Physical Chemistry 2008 (9 de junho de 2008): 1–4. http://dx.doi.org/10.1155/2008/504917.
Texto completo da fonteWang, Jianan, Chao Tian e Zhengguo Cao. "One-Pot Synthesis Bodipy Nano-Precipitations for Prostate Cancer Treatment". Journal of Biomaterials and Tissue Engineering 12, n.º 8 (1 de agosto de 2022): 1537–41. http://dx.doi.org/10.1166/jbt.2022.3070.
Texto completo da fonteLiu, Bin, Stéphanie Exiga, Etienne Duguet e Serge Ravaine. "Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio". Molecules 26, n.º 16 (5 de agosto de 2021): 4736. http://dx.doi.org/10.3390/molecules26164736.
Texto completo da fonteLandry, Markita P. "Protein Corona Formation on Hard and Polymeric Nanoparticles – Towards Understanding Biocompatibility, Biodistribution, and Efficacy". ECS Meeting Abstracts MA2022-01, n.º 8 (7 de julho de 2022): 707. http://dx.doi.org/10.1149/ma2022-018707mtgabs.
Texto completo da fonteCho, Yi Je, Lingchen Kong, Rezawana Islam, Meitong Nie, Wei Zhou e Kathy Lu. "Photothermal self-healing of gold nanoparticle–polystyrene hybrids". Nanoscale 12, n.º 40 (2020): 20726–36. http://dx.doi.org/10.1039/d0nr05621a.
Texto completo da fonteUsfoor, Zohair, Katharina Kaufmann, Al Shahriar Hossain Rakib, Roland Hergenröder e Victoria Shpacovitch. "Features of Sizing and Enumeration of Silica and Polystyrene Nanoparticles by Nanoparticle Tracking Analysis (NTA)". Sensors 20, n.º 22 (19 de novembro de 2020): 6611. http://dx.doi.org/10.3390/s20226611.
Texto completo da fonteDeville, Sarah, Birgit Honrath, Quynh T. D. Tran, Gyorgy Fejer, Ivo Lambrichts, Inge Nelissen, Amalia M. Dolga e Anna Salvati. "Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages". Archives of Toxicology 94, n.º 1 (1 de novembro de 2019): 173–86. http://dx.doi.org/10.1007/s00204-019-02604-5.
Texto completo da fonteBlattler, Aran, Panart Khajornrungruang, Keisuke Suzuki e Soraya Saenna. "A Novel Method for 3D Nanoscale Tracking of 100 nm Polystyrene Particles in Multi-Wavelength Evanescent Fields Microscopy – Absolute Difference Height Verification –". International Journal of Automation Technology 15, n.º 6 (5 de novembro de 2021): 831–41. http://dx.doi.org/10.20965/ijat.2021.p0831.
Texto completo da fonteSchadler, Linda S., Sarah L. Lewis, Jun Wei Yang e Brian C. Benicewicz. "Polymer Nanocomposites with Designed Interfaces". Key Engineering Materials 334-335 (março de 2007): 909–12. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.909.
Texto completo da fonteLu, Bin, Tyler Smith e Jacob J. Schmidt. "Nanoparticle–lipid bilayer interactions studied with lipid bilayer arrays". Nanoscale 7, n.º 17 (2015): 7858–66. http://dx.doi.org/10.1039/c4nr06892k.
Texto completo da fonteSoto, Ernesto R., Abaigeal C. Caras, Lindsey C. Kut, Melissa K. Castle e Gary R. Ostroff. "Glucan Particles for Macrophage Targeted Delivery of Nanoparticles". Journal of Drug Delivery 2012 (13 de outubro de 2012): 1–13. http://dx.doi.org/10.1155/2012/143524.
Texto completo da fonteKockmann, A., J. C. Porsiel, R. Saadat e G. Garnweitner. "Impact of nanoparticle surface modification on the mechanical properties of polystyrene-based nanocomposites". RSC Advances 8, n.º 20 (2018): 11109–18. http://dx.doi.org/10.1039/c8ra00052b.
Texto completo da fonteSadowska, Marta, Zbigniew Adamczyk e Małgorzata Nattich-Rak. "Mechanism of Nanoparticle Deposition on Polystyrene Latex Particles". Langmuir 30, n.º 3 (13 de janeiro de 2014): 692–99. http://dx.doi.org/10.1021/la404046c.
Texto completo da fonteYang, Myung-Seok, Sunil Jeong, Taewook Kang e Dongchoul Kim. "Equilibrium Morphology of Plasmonic Au/Polystyrene Dimeric Nanoparticle". Journal of Physical Chemistry C 119, n.º 11 (5 de março de 2015): 6148–51. http://dx.doi.org/10.1021/jp509508s.
Texto completo da fonteAl-Muzaiqer, Mohammed Ali Y. Ali, Tair E. Esenbaev, Nikolai S. Kubochkin, Maria D. Goreva e Natalya A. Ivanova. "Influence of substrate wettability and air humidity on self-assembly of nanoparticles in evaporating droplets of colloidal solutions". Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy 5, n.º 3 (14 de outubro de 2019): 83–96. http://dx.doi.org/10.21684/2411-7978-2019-5-3-83-96.
Texto completo da fonteChen, K. H., D. J. Lundy, E. K. W. Toh, C. H. Chen, C. Shih, P. Chen, H. C. Chang et al. "Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific". Nanoscale 7, n.º 38 (2015): 15863–72. http://dx.doi.org/10.1039/c5nr03626g.
Texto completo da fonteChen, Liang-Chia, e Bao-Hong Ji. "An On-Line Measurement and Control System for Submerged Arc Spray Synthesis of TiO2 Nanoparticles". Journal of Nanoscience and Nanotechnology 8, n.º 2 (1 de fevereiro de 2008): 503–9. http://dx.doi.org/10.1166/jnn.2008.d249.
Texto completo da fonteŠutka, Andris, Linda Mežule, Viktorija Denisova, Jochen Meier-Haack, Akshay Kulkarni, Sanda Bitina, Krisjanis Smits e Svetlana Vihodceva. "Straightforward Approach for Preparing Durable Antibacterial ZnO Nanoparticle Coatings on Flexible Substrates". Molecules 27, n.º 22 (8 de novembro de 2022): 7672. http://dx.doi.org/10.3390/molecules27227672.
Texto completo da fonteSabouri, Hadi, Yun Huang, Kohji Ohno e Sébastien Perrier. "Silica core–polystyrene shell nanoparticle synthesis and assembly in three dimensions". Nanoscale 7, n.º 45 (2015): 19036–46. http://dx.doi.org/10.1039/c5nr06400g.
Texto completo da fonteKulkarni, Akshay S., Ashok M. Sajjan, Ashwini M, Nagaraj R. Banapurmath, Narasimha H. Ayachit e Geeta G. Shirnalli. "Novel fabrication of PSSAMA_Na capped silver nanoparticle embedded sodium alginate membranes for pervaporative dehydration of bioethanol". RSC Advances 10, n.º 38 (2020): 22645–55. http://dx.doi.org/10.1039/d0ra01951h.
Texto completo da fonteLima, Tânia, Stefán B. Gunnarsson, Elisabete Coelho, Dmitry V. Evtuguin, Alexandra Correia, Manuel A. Coimbra, Tommy Cedervall e Manuel Vilanova. "β-Glucan-Functionalized Nanoparticles Down-Modulate the Proinflammatory Response of Mononuclear Phagocytes Challenged with Candida albicans". Nanomaterials 12, n.º 14 (19 de julho de 2022): 2475. http://dx.doi.org/10.3390/nano12142475.
Texto completo da fonteJiang, Liwen, Xuqing Sun, Hongyao Liu, Ruxue Wei, Xue Wang, Chang Wang, Xinchao Lu e Chengjun Huang. "Label-Free Imaging of Single Nanoparticles Using Total Internal Reflection-Based Leakage Radiation Microscopy". Nanomaterials 10, n.º 4 (27 de março de 2020): 615. http://dx.doi.org/10.3390/nano10040615.
Texto completo da fonteMawélé Loudy, Coste, Joachim Allouche, Antoine Bousquet, Laurent Billon e Hervé Martinez. "Functional nanoparticle-driven self-assembled diblock copolymer hybrid nano-patterns". Polymer Chemistry 13, n.º 13 (2022): 1920–30. http://dx.doi.org/10.1039/d2py00121g.
Texto completo da fonteDeborah Mbakaogu, Chioma, Ngozi Claribelle Nwogu, Nkemakolam Chinedu Izuwa e Stanley Toochukwu Ekwueme. "Oil-Water Emulsion Separation Using Nanoparticle-Coated Polystyrene Membrane". International Journal of Oil, Gas and Coal Engineering 8, n.º 6 (2020): 151. http://dx.doi.org/10.11648/j.ogce.20200806.15.
Texto completo da fonteP L, Jagadeshvaran, Harsha Nallabothula, Aishwarya V. Menon e Suryasarathi Bose. "Nanoinfiltration for Enhancing Microwave Attenuation in Polystyrene–Nanoparticle Composites". ACS Applied Nano Materials 3, n.º 2 (21 de janeiro de 2020): 1872–80. http://dx.doi.org/10.1021/acsanm.9b02521.
Texto completo da fonteKim, Jung Kil, e Heejoon Ahn. "Fabrication and characterization of polystyrene/gold nanoparticle composite nanofibers". Macromolecular Research 16, n.º 2 (fevereiro de 2008): 163–68. http://dx.doi.org/10.1007/bf03218846.
Texto completo da fonteChan, Angel T., e Jennifer A. Lewis. "Electrostatically Tuned Interactions in Silica Microsphere−Polystyrene Nanoparticle Mixtures". Langmuir 21, n.º 19 (setembro de 2005): 8576–79. http://dx.doi.org/10.1021/la0510073.
Texto completo da fonte