Artigos de revistas sobre o tema "Primary human articular cells"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Primary human articular cells".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Li, Zhong Alan, Jiangyinzi Shang, Shiqi Xiang, Eileen N. Li, Haruyo Yagi, Kanyakorn Riewruja, Hang Lin e Rocky S. Tuan. "Articular Tissue-Mimicking Organoids Derived from Mesenchymal Stem Cells and Induced Pluripotent Stem Cells". Organoids 1, n.º 2 (14 de novembro de 2022): 135–48. http://dx.doi.org/10.3390/organoids1020011.
Texto completo da fonteSabatino, Maria Antonietta, Rosaria Santoro, Sinan Gueven, Claude Jaquiery, David James Wendt, Ivan Martin, Matteo Moretti e Andrea Barbero. "Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells". Journal of Tissue Engineering and Regenerative Medicine 9, n.º 12 (6 de dezembro de 2012): 1394–403. http://dx.doi.org/10.1002/term.1661.
Texto completo da fontePiñeiro-Ramil, María, Clara Sanjurjo-Rodríguez, Silvia Rodríguez-Fernández, Tamara Hermida-Gómez, Francisco J. Blanco-García, Isaac Fuentes-Boquete, Carlos Vaamonde-García e Silvia Díaz-Prado. "Generation of human immortalized chondrocytes from osteoarthritic and healthy cartilage". Bone & Joint Research 12, n.º 1 (1 de janeiro de 2023): 46–57. http://dx.doi.org/10.1302/2046-3758.121.bjr-2022-0207.r1.
Texto completo da fonteTallheden, Tommi, Josefine Van Der Lee, Camilla Brantsing, Jan-Eric Månsson, Eva Sjögren-Jansson e Anders Lindahl. "Human Serum for Culture of Articular Chondrocytes". Cell Transplantation 14, n.º 7 (agosto de 2005): 469–79. http://dx.doi.org/10.3727/000000005783982909.
Texto completo da fonteBengue, Michèle, Pauline Ferraris, Cécile Baronti, Cheikh Tidiane Diagne, Loïc Talignani, Sineewanlaya Wichit, Florian Liegeois, Catherine Bisbal, Antoine Nougairède e Dorothée Missé. "Mayaro Virus Infects Human Chondrocytes and Induces the Expression of Arthritis-Related Genes Associated with Joint Degradation". Viruses 11, n.º 9 (29 de agosto de 2019): 797. http://dx.doi.org/10.3390/v11090797.
Texto completo da fonteZhang, Yu, Shuyun Liu, Weimin Guo, Chunxiang Hao, Mingjie Wang, Xu Li, Xueliang Zhang et al. "Coculture of hWJMSCs and pACs in Oriented Scaffold Enhances Hyaline Cartilage Regeneration In Vitro". Stem Cells International 2019 (7 de fevereiro de 2019): 1–11. http://dx.doi.org/10.1155/2019/5130152.
Texto completo da fonteTew, Simon R., Mandy J. Peffers, Tristan R. McKay, Emma T. Lowe, Wasim S. Khan, Timothy E. Hardingham e Peter D. Clegg. "Hyperosmolarity regulates SOX9 mRNA posttranscriptionally in human articular chondrocytes". American Journal of Physiology-Cell Physiology 297, n.º 4 (outubro de 2009): C898—C906. http://dx.doi.org/10.1152/ajpcell.00571.2008.
Texto completo da fonteSnelling, S., A. Kramm, C. Yapp, A. Carr e U. Oppermann. "Epigenetic modifying compounds alter activity of primary human articular chondrocytes and mesenchymal stem cells undergoing chondrogenesis". Osteoarthritis and Cartilage 22 (abril de 2014): S141. http://dx.doi.org/10.1016/j.joca.2014.02.260.
Texto completo da fonteMata, Manuel, Lara Milian, Maria Oliver, Javier Zurriaga, Maria Sancho-Tello, Jose Javier Martin de Llano e Carmen Carda. "In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study". Stem Cells International 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/8309256.
Texto completo da fonteCarluccio, Simonetta, Daniela Martinelli, Maria Elisabetta Federica Palamà, Rui Cruz Pereira, Roberto Benelli, Ana Guijarro, Ranieri Cancedda e Chiara Gentili. "Progenitor Cells Activated by Platelet Lysate in Human Articular Cartilage as a Tool for Future Cartilage Engineering and Reparative Strategies". Cells 9, n.º 4 (23 de abril de 2020): 1052. http://dx.doi.org/10.3390/cells9041052.
Texto completo da fonteSnelling, S., A. Kramm, P. Cain, C. Yapp, A. Carr, A. Price e U. Oppermann. "Epigenetic modifying compounds affect the activity of primary human articular chondrocytes and mesenchymal stem cells undergoing chondrogenesis". Osteoarthritis and Cartilage 21 (abril de 2013): S131. http://dx.doi.org/10.1016/j.joca.2013.02.277.
Texto completo da fonteLu, Liangjing, Chengxiang Dai, Hui Du, Suke Li, Ping Ye, Li Zhang, Xiaoying Wang et al. "Intra-articular injections of allogeneic human adipose-derived mesenchymal progenitor cells in patients with symptomatic bilateral knee osteoarthritis: a Phase I pilot study". Regenerative Medicine 15, n.º 5 (maio de 2020): 1625–36. http://dx.doi.org/10.2217/rme-2019-0106.
Texto completo da fonteNaranda, Jakob, Lidija Gradišnik, Mario Gorenjak, Matjaž Vogrin e Uroš Maver. "Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA)". PeerJ 5 (21 de março de 2017): e3079. http://dx.doi.org/10.7717/peerj.3079.
Texto completo da fonteGeng, Y., F. J. Blanco, M. Cornelisson e M. Lotz. "Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes." Journal of Immunology 155, n.º 2 (15 de julho de 1995): 796–801. http://dx.doi.org/10.4049/jimmunol.155.2.796.
Texto completo da fonteChang, Chi-Ching, Kun-Lin Lee, Tze-Sian Chan, Chia-Chen Chung e Yu-Chih Liang. "Histone Deacetylase Inhibitors Downregulate Calcium Pyrophosphate Crystal Formation in Human Articular Chondrocytes". International Journal of Molecular Sciences 23, n.º 5 (26 de fevereiro de 2022): 2604. http://dx.doi.org/10.3390/ijms23052604.
Texto completo da fonteKarlsen, Tommy A., Aboulghassem Shahdadfar e Jan E. Brinchmann. "Human Primary Articular Chondrocytes, Chondroblasts-Like Cells, and Dedifferentiated Chondrocytes: Differences in Gene, MicroRNA, and Protein Expression and Phenotype". Tissue Engineering Part C: Methods 17, n.º 2 (fevereiro de 2011): 219–27. http://dx.doi.org/10.1089/ten.tec.2010.0200.
Texto completo da fonteKiraly, Alex J., Andrea Roberts, Michael Cox, David Mauerhan, Edward Hanley e Yubo Sun. "Comparison of Meniscal Cell-Mediated and Chondrocyte-Mediated Calcification". Open Orthopaedics Journal 11, n.º 1 (31 de março de 2017): 225–33. http://dx.doi.org/10.2174/1874325001711010225.
Texto completo da fonteHwang, Hyun Sook, In Young Park, Hyun Ah Kim e Soo Young Choi. "PEP-1-GRX-1 Modulates Matrix Metalloproteinase-13 and Nitric Oxide Expression of Human Articular Chondrocytes". Cellular Physiology and Biochemistry 41, n.º 1 (23 de janeiro de 2016): 252–64. http://dx.doi.org/10.1159/000456090.
Texto completo da fonteDong, C., Y. Liu, A. Deng, J. Ji, W. Zheng e Z. Gu. "AB0071 THERAPEUTIC EFFECTS OF BONE MARROW MESENCHYMAL STEM CELLS-DERIVED EXOSOMES ON OSTEOARTHRITIS". Annals of the Rheumatic Diseases 79, Suppl 1 (junho de 2020): 1336.3–1336. http://dx.doi.org/10.1136/annrheumdis-2020-eular.6040.
Texto completo da fonteGuerne, Pierre-Andr�, Arthur Sublet e Martin Lotz. "Growth factor responsiveness of human articular chondrocytes: Distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts". Journal of Cellular Physiology 158, n.º 3 (março de 1994): 476–84. http://dx.doi.org/10.1002/jcp.1041580312.
Texto completo da fonteBonnet, Cleo S., Anwen S. Williams, Sophie J. Gilbert, Ann K. Harvey, Bronwen A. Evans e Deborah J. Mason. "AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis". Annals of the Rheumatic Diseases 74, n.º 1 (15 de outubro de 2013): 242–51. http://dx.doi.org/10.1136/annrheumdis-2013-203670.
Texto completo da fonteRelić, Biserka, Mohamed Bentires-Alj, Clio Ribbens, Nathalie Franchimont, Pierre-André Guerne, Valerie Benoît, Marie-Paule Merville, Vincent Bours e Michel G. Malaise. "TNF-α Protects Human Primary Articular Chondrocytes from Nitric Oxide-Induced Apoptosis Via Nuclear Factor-κB". Laboratory Investigation 82, n.º 12 (dezembro de 2002): 1661–72. http://dx.doi.org/10.1097/01.lab.0000041714.05322.c0.
Texto completo da fonteHan, Dong-Wook, Mi Hee Lee, Bongju Kim, Jun Jae Lee, Suong-Hyu Hyon e Jong-Chul Park. "Preventive Effects of Epigallocatechin-3-O-Gallate against Replicative Senescence Associated with p53 Acetylation in Human Dermal Fibroblasts". Oxidative Medicine and Cellular Longevity 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/850684.
Texto completo da fontePothacharoen, Peraphan, Sumet Najarus, Jongkolnee Settakorn, Shuji Mizumoto, Kazuyuki Sugahara e Prachya Kongtawelert. "Effects of sesamin on the biosynthesis of chondroitin sulfate proteoglycans in human articular chondrocytes in primary culture". Glycoconjugate Journal 31, n.º 3 (12 de dezembro de 2013): 221–30. http://dx.doi.org/10.1007/s10719-013-9514-6.
Texto completo da fonteBettany, J. T., e R. G. Wolowacz. "Tetracycline Derivatives Induce Apoptosis Selectively in Cultured Monocytes and Macrophages but not in Mesenchymal Cells". Advances in Dental Research 12, n.º 1 (novembro de 1998): 136–43. http://dx.doi.org/10.1177/08959374980120010901.
Texto completo da fonteNiada, Stefania, Chiara Giannasi, Marta Gomarasca, Deborah Stanco, Sara Casati e Anna Teresa Brini. "Adipose-derived stromal cell secretome reduces TNFα-induced hypertrophy and catabolic markers in primary human articular chondrocytes". Stem Cell Research 38 (julho de 2019): 101463. http://dx.doi.org/10.1016/j.scr.2019.101463.
Texto completo da fonteAmrichová, Judita, Tímea Špaková, Ján Rosocha, Denisa Harvanová, Darina Bačenková, Marek Lacko e Slavomír Horňák. "Effect of PRP and PPP on proliferation and migration of human chondrocytes and synoviocytes in vitro". Open Life Sciences 9, n.º 2 (1 de fevereiro de 2014): 139–48. http://dx.doi.org/10.2478/s11535-013-0255-0.
Texto completo da fonteYang, Hongwei, Meng Cong, Weixiao Huang, Jin Chen, Min Zhang, Xiaosong Gu, Cheng Sun e Huilin Yang. "The Effect of Human Bone Marrow Mesenchymal Stem Cell-Derived Exosomes on Cartilage Repair in Rabbits". Stem Cells International 2022 (8 de setembro de 2022): 1–12. http://dx.doi.org/10.1155/2022/5760107.
Texto completo da fonteVilliger, P. M., A. B. Kusari, P. ten Dijke e M. Lotz. "IL-1 beta and IL-6 selectively induce transforming growth factor-beta isoforms in human articular chondrocytes." Journal of Immunology 151, n.º 6 (15 de setembro de 1993): 3337–44. http://dx.doi.org/10.4049/jimmunol.151.6.3337.
Texto completo da fonteLotz, M., I. Clark-Lewis e V. Ganu. "HIV-1 transactivator protein Tat induces proliferation and TGF beta expression in human articular chondrocytes". Journal of Cell Biology 124, n.º 3 (1 de fevereiro de 1994): 365–71. http://dx.doi.org/10.1083/jcb.124.3.365.
Texto completo da fonteStellavato, Antonietta, Valentina Vassallo, Annalisa La Gatta, Anna Virginia Adriana Pirozzi, Mario De Rosa, Giovanni Balato, Alessio D’Addona, Virginia Tirino, Carlo Ruosi e Chiara Schiraldi. "Novel Hybrid Gels Made of High and Low Molecular Weight Hyaluronic Acid Induce Proliferation and Reduce Inflammation in an Osteoarthritis In Vitro Model Based on Human Synoviocytes and Chondrocytes". BioMed Research International 2019 (23 de abril de 2019): 1–13. http://dx.doi.org/10.1155/2019/4328219.
Texto completo da fonteKochukov, Mikhail Y., Terry A. McNearney, Yibing Fu e Karin N. Westlund. "Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes". American Journal of Physiology-Cell Physiology 291, n.º 3 (setembro de 2006): C424—C432. http://dx.doi.org/10.1152/ajpcell.00553.2005.
Texto completo da fonteCordaro, Annalaura, Roberto Zagami, Milo Malanga, Jagadeesh Kumar Venkatesan, Carmen Alvarez-Lorenzo, Magali Cucchiarini, Anna Piperno e Antonino Mazzaglia. "Cyclodextrin Cationic Polymer-Based Nanoassemblies to Manage Inflammation by Intra-Articular Delivery Strategies". Nanomaterials 10, n.º 9 (29 de agosto de 2020): 1712. http://dx.doi.org/10.3390/nano10091712.
Texto completo da fontePark, Cheol, Jin-Woo Jeong, Dae-Sung Lee, Mi-Jin Yim, Jeong Lee, Min Han, Suhkmann Kim et al. "Sargassum serratifolium Extract Attenuates Interleukin-1β-Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF-κB, p38 MAPK, and PI3K/Akt". International Journal of Molecular Sciences 19, n.º 8 (7 de agosto de 2018): 2308. http://dx.doi.org/10.3390/ijms19082308.
Texto completo da fonteGögele, Clemens, Silvana Müller, Svetlana Belov, Andreas Pradel, Sven Wiltzsch, Armin Lenhart, Markus Hornfeck et al. "Biodegradable Poly(D-L-lactide-co-glycolide) (PLGA)-Infiltrated Bioactive Glass (CAR12N) Scaffolds Maintain Mesenchymal Stem Cell Chondrogenesis for Cartilage Tissue Engineering". Cells 11, n.º 9 (7 de maio de 2022): 1577. http://dx.doi.org/10.3390/cells11091577.
Texto completo da fonteHutchison, Michele R., e Perrin C. White. "Prostacyclin Regulates Bone Growth via the Epac/Rap1 Pathway". Endocrinology 156, n.º 2 (18 de novembro de 2014): 499–510. http://dx.doi.org/10.1210/en.2014-1348.
Texto completo da fonteSancho-Tello, Maria, Sara Martorell, Manuel Mata Roig, Lara Milián, MA Gámiz-González, Jose Luis Gómez Ribelles e Carmen Carda. "Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds". Journal of Tissue Engineering 8 (1 de janeiro de 2017): 204173141769754. http://dx.doi.org/10.1177/2041731417697545.
Texto completo da fonteSakata, Shuzo, Ryo Kunimatsu, Yuji Tsuka, Ayaka Nakatani, Tomoka Hiraki, Hidemi Gunji, Naoto Hirose, Makoto Yanoshita, Nurul Aisyah Rizky Putranti e Kotaro Tanimoto. "High-Frequency Near-Infrared Diode Laser Irradiation Attenuates IL-1β-Induced Expression of Inflammatory Cytokines and Matrix Metalloproteinases in Human Primary Chondrocytes". Journal of Clinical Medicine 9, n.º 3 (24 de março de 2020): 881. http://dx.doi.org/10.3390/jcm9030881.
Texto completo da fontevan den Akker, Guus G. H., Lars M. T. Eijssen, Stephen M. Richardson, Lodewijk W. van Rhijn, Judith A. Hoyland, Tim J. M. Welting e Jan Willem Voncken. "A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc". CARTILAGE 11, n.º 2 (9 de abril de 2018): 203–20. http://dx.doi.org/10.1177/1947603518764260.
Texto completo da fonteBlanco, F. J., Y. Geng e M. Lotz. "Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression." Journal of Immunology 154, n.º 8 (15 de abril de 1995): 4018–26. http://dx.doi.org/10.4049/jimmunol.154.8.4018.
Texto completo da fonteOtsuka, H., T. Satomi, Koji Ueno e Tetsuya Tateishi. "Nano-Fabricated Aligned Spheroid for Cartilage Tissue Engineering". Advances in Science and Technology 53 (outubro de 2006): 67–69. http://dx.doi.org/10.4028/www.scientific.net/ast.53.67.
Texto completo da fonteBehera, Aruna K., Ethan Hildebrand, Joanna Scagliotti, Allen C. Steere e Linden T. Hu. "Induction of Host Matrix Metalloproteinases by Borrelia burgdorferi Differs in Human and Murine Lyme Arthritis". Infection and Immunity 73, n.º 1 (janeiro de 2005): 126–34. http://dx.doi.org/10.1128/iai.73.1.126-134.2005.
Texto completo da fonteMao, Guping, Peihui Wu, Ziji Zhang, Zhiqi Zhang, Weiming Liao, Yukang Li e Yan Kang. "MicroRNA-92a-3p Regulates Aggrecanase-1 and Aggrecanase-2 Expression in Chondrogenesis and IL-1β-Induced Catabolism in Human Articular Chondrocytes". Cellular Physiology and Biochemistry 44, n.º 1 (2017): 38–52. http://dx.doi.org/10.1159/000484579.
Texto completo da fonteLu, Hsien-Tsung, Jeng-Wei Lu, Chian-Her Lee, Yi-Jen Peng, Herng-Sheng Lee, You-Hsiang Chu, Yi-Jung Ho, Feng-Cheng Liu, Pei-Hung Shen e Chih-Chien Wang. "Attenuative Effects of Platelet-Rich Plasma on 30 kDa Fibronectin Fragment-Induced MMP-13 Expression Associated with TLR2 Signaling in Osteoarthritic Chondrocytes and Synovial Fibroblasts". Journal of Clinical Medicine 10, n.º 19 (29 de setembro de 2021): 4496. http://dx.doi.org/10.3390/jcm10194496.
Texto completo da fonteTendulkar, Gauri, Sabrina Ehnert, Vrinda Sreekumar, Tao Chen, Hans-Peter Kaps, Sonia Golombek, Hans-Peter Wendel, Andreas Nüssler e Meltem Avci-Adali. "Exogenous Delivery of Link N mRNA into Chondrocytes and MSCs—The Potential Role in Increasing Anabolic Response". International Journal of Molecular Sciences 20, n.º 7 (6 de abril de 2019): 1716. http://dx.doi.org/10.3390/ijms20071716.
Texto completo da fonteClaassen, Horst, Martin Schicht, Jörg Brandt, Katharina Reuse, Ricarda Schädlich, Mary B. Goldring, Saskia Sabrina Guddat, Annett Thate e Friedrich Paulsen. "C-28/I2 and T/C-28a2 chondrocytes as well as human primary articular chondrocytes express sex hormone and insulin receptors—Useful cells in study of cartilage metabolism". Annals of Anatomy - Anatomischer Anzeiger 193, n.º 1 (fevereiro de 2011): 23–29. http://dx.doi.org/10.1016/j.aanat.2010.09.005.
Texto completo da fonteFranco-Trepat, Eloi, Ana Alonso-Pérez, María Guillán-Fresco, Miriam López-Fagúndez, Andrés Pazos-Pérez, Antía Crespo-Golmar, Susana Belén Bravo et al. "β Boswellic Acid Blocks Articular Innate Immune Responses: An In Silico and In Vitro Approach to Traditional Medicine". Antioxidants 12, n.º 2 (3 de fevereiro de 2023): 371. http://dx.doi.org/10.3390/antiox12020371.
Texto completo da fonteGurgul, Sebastian J., Anabela Moreira, Yi Xiao, Swastina Nath Varma, Chaozong Liu, Pedro F. Costa e Gareth R. Williams. "Electrosprayed Particles Loaded with Kartogenin as a Potential Osteochondral Repair Implant". Polymers 15, n.º 5 (2 de março de 2023): 1275. http://dx.doi.org/10.3390/polym15051275.
Texto completo da fonteHuang, Hsuan-Ti, Tsung-Lin Cheng, Chung-Da Yang, Chi-Fen Chang, Cheng-Jung Ho, Shu-Chun Chuang, Jhong-You Li et al. "Intra-Articular Injection of (−)-Epigallocatechin 3-Gallate (EGCG) Ameliorates Cartilage Degeneration in Guinea Pigs with Spontaneous Osteoarthritis". Antioxidants 10, n.º 2 (26 de janeiro de 2021): 178. http://dx.doi.org/10.3390/antiox10020178.
Texto completo da fonteHuang, Chun-Yin, Hsiu-Jung Lin, Hsin-Shui Chen, Shi-Yann Cheng, Horng-Chaung Hsu e Chih-Hsin Tang. "Thrombin Promotes Matrix Metalloproteinase-13 Expression through the PKCδ/c-Src/EGFR/PI3K/Akt/AP-1 Signaling Pathway in Human Chondrocytes". Mediators of Inflammation 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/326041.
Texto completo da fonte