Literatura científica selecionada sobre o tema "Quantum material"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quantum material".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Quantum material"
Dai, Xian Hua, e Hong Li. "A Survey on Additivity Conjecture". Applied Mechanics and Materials 203 (outubro de 2012): 497–99. http://dx.doi.org/10.4028/www.scientific.net/amm.203.497.
Texto completo da fonteJUNG, Suyong, Junho SUH e Yong-Sung KIM. "Quantum Material Metrology based on Nanoscale Quantum Devices". Physics and High Technology 28, n.º 11 (30 de novembro de 2019): 8–14. http://dx.doi.org/10.3938/phit.28.044.
Texto completo da fonteYu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng e Yu Yang. "Topological quantum material simulated with superconducting quantum circuits". Acta Physica Sinica 67, n.º 22 (2018): 220302. http://dx.doi.org/10.7498/aps.67.20181857.
Texto completo da fonteCastelletto, Stefania, Faraz A. Inam, Shin-ichiro Sato e Alberto Boretti. "Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface". Beilstein Journal of Nanotechnology 11 (8 de maio de 2020): 740–69. http://dx.doi.org/10.3762/bjnano.11.61.
Texto completo da fontede Graaf, S. E., S. Un, A. G. Shard e T. Lindström. "Chemical and structural identification of material defects in superconducting quantum circuits". Materials for Quantum Technology 2, n.º 3 (19 de julho de 2022): 032001. http://dx.doi.org/10.1088/2633-4356/ac78ba.
Texto completo da fonteZhang, Jie-Yin, Fei Gao e Jian-Jun Zhang. "Research progress of silicon and germanium quantum computing materials". Acta Physica Sinica 70, n.º 21 (2021): 217802. http://dx.doi.org/10.7498/aps.70.20211492.
Texto completo da fonteYang, HeeBong, e Na Young Kim. "Material-Inherent Noise Sources in Quantum Information Architecture". Materials 16, n.º 7 (23 de março de 2023): 2561. http://dx.doi.org/10.3390/ma16072561.
Texto completo da fontePan, Xing-Chen, Xuefeng Wang, Fengqi Song e Baigeng Wang. "The study on quantum material WTe2". Advances in Physics: X 3, n.º 1 (janeiro de 2018): 1468279. http://dx.doi.org/10.1080/23746149.2018.1468279.
Texto completo da fontePatrick, Chris. "Lasers advance 2D quantum material manufacturing". Scilight 2019, n.º 25 (21 de junho de 2019): 250014. http://dx.doi.org/10.1063/1.5115490.
Texto completo da fonteBogdanov, S., M. Y. Shalaginov, A. Boltasseva e V. M. Shalaev. "Material platforms for integrated quantum photonics". Optical Materials Express 7, n.º 1 (8 de dezembro de 2016): 111. http://dx.doi.org/10.1364/ome.7.000111.
Texto completo da fonteTeses / dissertações sobre o assunto "Quantum material"
Zietal, Robert J. "Quantum elecrodynamics near material boundaries". Thesis, University of Sussex, 2010. http://sro.sussex.ac.uk/id/eprint/2520/.
Texto completo da fonteMatloob, Mohammad Reza. "Theory of electromagnetic field quantization in material media". Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282572.
Texto completo da fonteWang, Qi. "Study of InGaN based quantum dot material and devices". Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522509.
Texto completo da fonteWong, Huei Ching. "Investigation of quantum dot based material systems for metro-access network". Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437270.
Texto completo da fonteBlay, Claire. "Characterisation of intermixed quantum well material by measurements of spontaneous emission". Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323571.
Texto completo da fonteBRUNI, FRANCESCO. "NOVEL MATERIAL DESIGN AND MANIPULATION STRATEGIES FOR ADVANCED OPTOELECTRONIC APPLICATIONS". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/151660.
Texto completo da fonteMy PhD has been focused on organic semiconductors for photovoltaics and photodetecting applications. Initially, I worked on the control of the morphology in binary blends of small organic molecules and fullerenes using the so called latent pigment approach. Subsequently, I investigated the charge accumulation and polarization effect occurring at the interface between water and a polymeric semiconductor used as optical component in retinal prosthesis by means of inorganic colloidal nanocrystals featuring a ratiometric sensing ability for electron withdrawing agents. As a last part of the work, I focalized on the applications of these nanocrystals as ratiometric sensors for intracellular pH probing and pressure optical monitoring. Specifically, during the first part of my PhD, I worked in the field of organic photovoltaics on the morphology engineering of the active layer of small molecules bulk-heterojunction solar cells. I demonstrated a new strategy to fine tune the phase-segregation in thin films of a suitably functionalized electron donor blended with fullerene derivatives by introducing in the system a post-deposition thermally activated network of hydrogen bonds that leads to improved stability and high crystallinity. Moreover, this process increases the carrier mobility of the donor species and allows for controlling the size of segregated domains resulting in an improved efficiency of the photovoltaic devices. This work revealed the great potential of the latent hydrogen bonding strategy that I subsequently exploited to fabricate nanometric semiconductive features on the film surface by using a very simple maskless lithographic technique. To do so, I focalized a UV laser into a confocal microscope and used the objective as a “brush” to thermically induce a localized hydrogen bonding driven crystallization with diffraction limited resolution. My work on organic semiconductors continued with a study on the surface polarization driven charge separation at the P3HT/water interfaces in optoelectronic devices for biologic applications. In this work, I probed the local accumulation of positive charges on the P3HT surface in aqueous environment by exploiting the ratiometric sensing capabilities of particular engineered core/shell heterostuctures called dot-in-bulk nanocrystals (DiB-NCs). These structures feature two-colour emission due to the simultaneous recombination of their core and shell localized excitons. Importantly, the two emissions are differently affected by the external chemical environment, making DiB-NCs ideal optical ratiometric sensors. In the second part of my PhD, I, therefore, focalized on the single particle sensing application of DiB-NCs. Specifically, I used them to ratiometrically probe intracellular pH in living cells. With this aim, I studied their ratiometric response in solution by titration with an acid and a base. Subsequently, I internalized them into living human embryonic kidney (HEK) cells and monitored an externally induced alteration of the intracellular pH. Importantly, viability test on DiB-NCs revealed no cytotoxicity demonstrating their great potential as ratiometric pH probes for biologic application. Finally, I used DiB-NCs as a proof-of-concept single particle ratiometric pressure sensitive paint (r-PSP). In this application, the emission ratio between the core and the shell emission is used to determine the oxygen partial pressure and therefore the atmospheric pressure of the NC environment.
Rasin, Ahmed Tasnim. "High efficiency quantum dot-sensitised solar cells by material science and device architecture". Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/78822/1/Ahmed%20Tasnim_Rasin_Thesis.pdf.
Texto completo da fontePillar-Little, Timothy J. Jr. "CARBON QUANTUM DOTS: BRIDGING THE GAP BETWEEN CHEMICAL STRUCTURE AND MATERIAL PROPERTIES". UKnowledge, 2018. https://uknowledge.uky.edu/chemistry_etds/94.
Texto completo da fonteHatami, Soheil, Christian Würth, Martin Kaiser, Susanne Leubner, Stefanie Gabriel, Lydia Bahrig, Vladimir Lesnyak et al. "Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd₁₋ₓHgₓTe and PbS quantum dots: method- and material-inherent challenges". Royal Society of Chemistry, 2015. https://tud.qucosa.de/id/qucosa%3A36307.
Texto completo da fonteStavrinou, Paul Nicholas. "A study of InP-based strained layer heterostructures". Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261711.
Texto completo da fonteLivros sobre o assunto "Quantum material"
Aoki, Yuriko, Yuuichi Orimoto e Akira Imamura. Quantum Chemical Approach for Organic Ferromagnetic Material Design. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49829-4.
Texto completo da fonteDipak, Basu, ed. Dictionary of material science and high energy physics. Boca Raton, Fla: CRC Press, 2001.
Encontre o texto completo da fonteGoswami, Amit. The self-aware universe: How consciousness creates the material world. New York: Jeremy P. Tarcher/Putnam, 1995.
Encontre o texto completo da fonteG, Ihas G., e Takano Yasumasa, eds. Quantum fluids and solids--1989, Gainesville, FL 1989. New York: American Institute of Physics, 1989.
Encontre o texto completo da fonteE, Reed Richard, e Goswami Maggie, eds. The self-aware universe: How consciousness creates the material world. New York: Putnam's Sons, 1993.
Encontre o texto completo da fonteF, Habenicht Bradley, ed. Excitonic and vibrational dynamics in nanotechnology: Quantum dots vs. nanotubes. Singapore: Pan Stanford Pub., 2009.
Encontre o texto completo da fonte1952-, Jauho Antti-Pekka, ed. Quantum kinetics in transport and optics of semiconductors. Berlin: Springer, 1996.
Encontre o texto completo da fonteGore, Gordon R. A student's guide to physics 12: A brief summary of core material and the quantum physics option in physics 12 for British Columbia. [Mission, B.C.]: G.R. Gore, 1991.
Encontre o texto completo da fonteA, Goldman J., Brennan K. F e United States. National Aeronautics and Space Administration., eds. Theoretical and material studies of thin-film electroluminescent devices: Sixth six-monthly report for the period 1 November 1987 - 30 April 1988. Atlanta, GA: Georgia Institute of Technology ; [Washington, DC, 1988.
Encontre o texto completo da fonteF, Brennan K., e United States. National Aeronautics and Space Administration., eds. Theoretical and material studies of thin-film electroluminescent devices: Second six monthly report for the period 1 October 1985 - 31 March 1986. [Washington, DC: National Aeronautics and Space Administration, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Quantum material"
Hermann, Jan. "Introduction to Material Modeling". In Machine Learning Meets Quantum Physics, 7–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40245-7_2.
Texto completo da fonteFernández, Roberto, Jürg Fröhlich e Alan D. Sokal. "Background material". In Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory, 275–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02866-7_13.
Texto completo da fonteBrandt, Siegmund, Hans Dieter Dahmen e Tilo Stroh. "Additional Material and Hints for the Solution of Exercises". In Interactive Quantum Mechanics, 269–314. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7424-2_12.
Texto completo da fonteBrandt, Siegmund, Hans Dieter Dahmen e Tilo Stroh. "Additional Material and Hints for the Solution of Exercises". In Interactive Quantum Mechanics, 206–47. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21653-9_10.
Texto completo da fonteSon, Dong-Ick, e Won-Kook Choi. "New Nanoscale Material: Graphene Quantum Dots". In Nanomaterials, Polymers, and Devices, 141–94. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118867204.ch6.
Texto completo da fonteHorak, R., J. Bjer, C. Sibilia e M. Bertolotti. "Diffraction Free Field Propagation in Nonlinear Material". In Coherence and Quantum Optics VII, 685–86. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_213.
Texto completo da fonteAmbjørn, Jan. "Preliminary Material Part 1: The Path Integral". In Elementary Introduction to Quantum Geometry, 1–14. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003320562-1.
Texto completo da fonteIto, Ryoichi, Chang-qing Xu e Takashi Kondo. "(C10H21NH3)2PbI4: A natural quantum-well material". In Solid State Materials, 157–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_9.
Texto completo da fonteBarbeau, Michel. "Secure Quantum Data Communications Using Classical Keying Material". In Quantum Technology and Optimization Problems, 183–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14082-3_16.
Texto completo da fonteRay, Samit K., Subhrajit Mukherjee, Tamal Dey, Subhajit Jana e Elad Koren. "Two-Dimensional Material-Based Quantum Dots for Wavelength-Selective, Tunable, and Broadband Photodetector Devices". In Quantum Dot Photodetectors, 249–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74270-6_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Quantum material"
Dutta, A., A. P. M. Place, K. D. Crowley, X. H. Le, Y. Gang, L. V. H. Rodgers, T. Madhavan et al. "Study of material loss channels in tantalum microwave superconducting resonators". In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qtu2a.25.
Texto completo da fonteTAKADA, TOSHIKAZU. "WHAT QUANTUM CHEMISTS LEARN FROM BIO MATERIAL SIMULATIONS?" In Quantum Bio-Informatics — From Quantum Information to Bio-Informatics. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793171_0031.
Texto completo da fonteLisnichenko, Marina, e Stanislav Protasov. "BIO MATERIAL MODELING QUANTUM CIRCUIT COMPRESSION". In Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3058.mmmsec-2022/15-17.
Texto completo da fonteMichael, Stephan, Weng W. Chow e Hans Christian Schneider. "Quantum dots as active material for quantum cascade lasers: comparison to quantum wells". In SPIE OPTO, editado por Alexey A. Belyanin e Peter M. Smowton. SPIE, 2016. http://dx.doi.org/10.1117/12.2213324.
Texto completo da fonteBeckert, Adrian, Joe Bailey, Guy Matmon, Simon Gerber, Hans Sigg e Gabriel Aeppli. "LiY1-xHoxF4: a candidate material for the implementation of solid state qubits (Conference Presentation)". In Quantum Technologies, editado por Andrew J. Shields, Jürgen Stuhler e Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2307317.
Texto completo da fonteYoshie, Tomoyuki, Marko Loncar, Koichi Okamoto, Yueming Qiu, Oleg B. Shchekin, Hao Chen, Dennis G. Deppe e Axel Scherer. "Photonic crystal nanocavities with quantum well or quantum dot active material". In Integrated Optoelectronic Devices 2004, editado por Ali Adibi, Axel Scherer e Shawn-Yu Lin. SPIE, 2004. http://dx.doi.org/10.1117/12.525869.
Texto completo da fonteKay, Bruce D., T. D. Raymond e Michael E. Coltrin. "Quantum-Resolved Gas-Surface Scattering: NH3 from Au (111)". In Lasers in Material Diagnostics. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lmd.1987.we2.
Texto completo da fonteCarignan, L., D. Menard e C. Caloz. "Ferromagnetic nanowire material electromagnetic and quantum devices". In TELSIKS 2011 - 2011 10th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services. IEEE, 2011. http://dx.doi.org/10.1109/telsks.2011.6111771.
Texto completo da fonteSchaevitz, Rebecca K., Jonathan E. Roth, Onur Fidaner e David A. B. Miller. "Material properties in SiGe/Ge quantum wells". In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.fmc3.
Texto completo da fonteAubergier, Nathan, Patricia Loren, Julien Guise, Franziska Braho, Pierre Fehlen, Melissa Najem, Fernando Gonzalez-Posada et al. "Quantum plasmonics and hyperbolic material for biosensing". In Quantum Sensing and Nano Electronics and Photonics XVIII, editado por Manijeh Razeghi, Giti A. Khodaparast e Miriam S. Vitiello. SPIE, 2022. http://dx.doi.org/10.1117/12.2615652.
Texto completo da fonteRelatórios de organizações sobre o assunto "Quantum material"
Pettes, Michael Thompson. Deterministic Quantum Emission in an Epitaxial 2D Material. Office of Scientific and Technical Information (OSTI), julho de 2020. http://dx.doi.org/10.2172/1529528.
Texto completo da fonteXiao, John. Spin orbit torque in ferromagnet/topological-quantum-material heterostructures. Office of Scientific and Technical Information (OSTI), agosto de 2018. http://dx.doi.org/10.2172/1886831.
Texto completo da fontePanfil, Yossef E., Meirav Oded, Nir Waiskopf e Uri Banin. Material Challenges for Colloidal Quantum Nanostructures in Next Generation Displays. AsiaChem Magazine, novembro de 2020. http://dx.doi.org/10.51167/acm00008.
Texto completo da fonteMitchell, B. G. Quantum Yields of Soluble and Particulate Material in the Ocean. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1999. http://dx.doi.org/10.21236/ada375906.
Texto completo da fonteAdams, George F., e Cary F. Chabalowski. Quantum Chemical Studies of Candidate High Energy Density Material Compounds. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1991. http://dx.doi.org/10.21236/ada232393.
Texto completo da fonteDominguez, Francisco Javier, Predrag Krstic, Jean Paul Allain, Felipe Bedoya e Bruce Koel. Quantum-Classical Science for the Plasma-Material Interface in NSTXU - Final Technical Report. Office of Scientific and Technical Information (OSTI), setembro de 2019. http://dx.doi.org/10.2172/1567016.
Texto completo da fonteMounce, Andrew, Joe Thompson, Eric Bauer, A. Reyes e P. Kuhns. Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material CeRhIn5 at High Magnetic Fields Studied by NMR. Office of Scientific and Technical Information (OSTI), dezembro de 2014. http://dx.doi.org/10.2172/1165175.
Texto completo da fonteDisterhaupt, Jennifer, Michael James e Marc Klasky. (U) Segmented Scintillator Pitch, Thickness, and Septa Material Effects on the Swank Factor, Quantum Efficiency, and DQE(0) for High-Energy X-Ray Radiography. Office of Scientific and Technical Information (OSTI), março de 2021. http://dx.doi.org/10.2172/1770096.
Texto completo da fonteNenoff, Tina M., Tina M. Nenoff, Tina M. Nenoff, Tina M. Nenoff, Stanley Shihyao Chou, Stanley Shihyao Chou, Peter Dickens et al. Topological Quantum Materials for Quantum Computation. Office of Scientific and Technical Information (OSTI), outubro de 2019. http://dx.doi.org/10.2172/1569786.
Texto completo da fonteMisra, Shashank, Daniel Robert Ward, Andrew David Baczewski, Quinn Campbell, Scott William Schmucker, Andrew M. Mounce, Lisa A. Tracy, Tzu-Ming Lu, Michael Thomas Marshall e DeAnna Marie Campbell. Designer quantum materials. Office of Scientific and Technical Information (OSTI), setembro de 2019. http://dx.doi.org/10.2172/1592939.
Texto completo da fonte