Literatura científica selecionada sobre o tema "Rank of symmetric tensors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Rank of symmetric tensors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Rank of symmetric tensors"
Ballico, E. "Gaps in the pairs (border rank, symmetric rank) for symmetric tensors". Sarajevo Journal of Mathematics 9, n.º 2 (novembro de 2013): 169–81. http://dx.doi.org/10.5644/sjm.09.2.02.
Texto completo da fonteComon, Pierre, Gene Golub, Lek-Heng Lim e Bernard Mourrain. "Symmetric Tensors and Symmetric Tensor Rank". SIAM Journal on Matrix Analysis and Applications 30, n.º 3 (janeiro de 2008): 1254–79. http://dx.doi.org/10.1137/060661569.
Texto completo da fonteSEGAL, ARKADY Y. "POINT PARTICLE–SYMMETRIC TENSORS INTERACTION AND GENERALIZED GAUGE PRINCIPLE". International Journal of Modern Physics A 18, n.º 27 (30 de outubro de 2003): 5021–38. http://dx.doi.org/10.1142/s0217751x03015842.
Texto completo da fonteCasarotti, Alex, Alex Massarenti e Massimiliano Mella. "On Comon’s and Strassen’s Conjectures". Mathematics 6, n.º 11 (25 de outubro de 2018): 217. http://dx.doi.org/10.3390/math6110217.
Texto completo da fonteBernardi, Alessandra, Alessandro Gimigliano e Monica Idà. "Computing symmetric rank for symmetric tensors". Journal of Symbolic Computation 46, n.º 1 (janeiro de 2011): 34–53. http://dx.doi.org/10.1016/j.jsc.2010.08.001.
Texto completo da fonteDe Paris, Alessandro. "Seeking for the Maximum Symmetric Rank". Mathematics 6, n.º 11 (12 de novembro de 2018): 247. http://dx.doi.org/10.3390/math6110247.
Texto completo da fonteObster, Dennis, e Naoki Sasakura. "Counting Tensor Rank Decompositions". Universe 7, n.º 8 (15 de agosto de 2021): 302. http://dx.doi.org/10.3390/universe7080302.
Texto completo da fonteFriedland, Shmuel. "Remarks on the Symmetric Rank of Symmetric Tensors". SIAM Journal on Matrix Analysis and Applications 37, n.º 1 (janeiro de 2016): 320–37. http://dx.doi.org/10.1137/15m1022653.
Texto completo da fonteZhang, Xinzhen, Zheng-Hai Huang e Liqun Qi. "Comon's Conjecture, Rank Decomposition, and Symmetric Rank Decomposition of Symmetric Tensors". SIAM Journal on Matrix Analysis and Applications 37, n.º 4 (janeiro de 2016): 1719–28. http://dx.doi.org/10.1137/141001470.
Texto completo da fonteWen, Jie, Qin Ni e Wenhuan Zhu. "Rank-r decomposition of symmetric tensors". Frontiers of Mathematics in China 12, n.º 6 (5 de maio de 2017): 1339–55. http://dx.doi.org/10.1007/s11464-017-0632-5.
Texto completo da fonteTeses / dissertações sobre o assunto "Rank of symmetric tensors"
Erdtman, Elias, e Carl Jönsson. "Tensor Rank". Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78449.
Texto completo da fontemazzon, andrea. "Hilbert functions and symmetric tensors identifiability". Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1133145.
Texto completo da fonteWang, Roy Chih Chung. "Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36975.
Texto completo da fonteHarmouch, Jouhayna. "Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible". Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4236/document.
Texto completo da fonteWe study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model
Savas, Berkant. "Algorithms in data mining using matrix and tensor methods". Doctoral thesis, Linköpings universitet, Beräkningsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11597.
Texto completo da fonteSantarsiero, Pierpaola. "Identifiability of small rank tensors and related problems". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/335243.
Texto completo da fonteTurner, Kenneth James. "Higher-order filtering for nonlinear systems using symmetric tensors". Thesis, Queensland University of Technology, 1999.
Encontre o texto completo da fonteHjelm, Andersson Hampus. "Classification of second order symmetric tensors in the Lorentz metric". Thesis, Linköpings universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57197.
Texto completo da fonteRovi, Ana. "Analysis of 2 x 2 x 2 Tensors". Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56762.
Texto completo da fonteThe question about how to determine the rank of a tensor has been widely studied in the literature. However the analytical methods to compute the decomposition of tensors have not been so much developed even for low-rank tensors.
In this report we present analytical methods for finding real and complex PARAFAC decompositions of 2 x 2 x 2 tensors before computing the actual rank of the tensor.
These methods are also implemented in MATLAB.
We also consider the question of how best lower-rank approximation gives rise to problems of degeneracy, and give some analytical explanations for these issues.
譚天佑 e Tin-yau Tam. "A study of induced operators on symmetry classes of tensors". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31230738.
Texto completo da fonteLivros sobre o assunto "Rank of symmetric tensors"
Baerheim, Reidar. Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry. [Utrecht: Faculteit Aardwetenschappen, Universiteit Utrecht], 1998.
Encontre o texto completo da fonteGarcia, Miguel Angel Garrido. Characterization of the Fluctuations in a Symmetric Ensemble of Rank-Based Interacting Particles. [New York, N.Y.?]: [publisher not identified], 2021.
Encontre o texto completo da fonteWerner, Müller. L²-index of elliptic operators on manifolds with cusps of rank one. Berlin: Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, 1985.
Encontre o texto completo da fonteTerras, Audrey. Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3408-9.
Texto completo da fonteCai, Jianqing. Statistical inference of the eigenspace components of a symmetric random deformation tensor. Munchen: Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlags C.H. Beck, 2004.
Encontre o texto completo da fonteTerras, Audrey. Harmonic Analysis on Symmetric Spaces--Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. Springer London, Limited, 2016.
Encontre o texto completo da fonteHarmonic Analysis on Symmetric Spaces--Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. Springer New York, 2016.
Encontre o texto completo da fonteTerras, Audrey. Harmonic Analysis on Symmetric Spaces―Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. Springer, 2018.
Encontre o texto completo da fonteBuchler, Justin. Voter Preferences over Bundles of Roll Call Votes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190865580.003.0002.
Texto completo da fonteLukas, Andre. The Oxford Linear Algebra for Scientists. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198844914.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "Rank of symmetric tensors"
Hess, Siegfried. "Symmetric Second Rank Tensors". In Tensors for Physics, 55–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12787-3_5.
Texto completo da fonteMalgrange, Cécile, Christian Ricolleau e Michel Schlenker. "Second-rank tensors". In Symmetry and Physical Properties of Crystals, 205–23. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8993-6_10.
Texto completo da fonteHess, Siegfried. "Symmetry of Second Rank Tensors, Cross Product". In Tensors for Physics, 33–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12787-3_3.
Texto completo da fonteHarmouch, Jouhayna, Bernard Mourrain e Houssam Khalil. "Decomposition of Low Rank Multi-symmetric Tensor". In Mathematical Aspects of Computer and Information Sciences, 51–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72453-9_4.
Texto completo da fonteLiu, Haixia, Lizhang Miao e Yang Wang. "Synchronized Recovery Method for Multi-Rank Symmetric Tensor Decomposition". In Mathematics and Visualization, 241–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91274-5_11.
Texto completo da fonteKaimakamis, George, e Konstantina Panagiotidou. "The *-Ricci Tensor of Real Hypersurfaces in Symmetric Spaces of Rank One or Two". In Springer Proceedings in Mathematics & Statistics, 199–210. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55215-4_18.
Texto completo da fonteBallet, Stéphane, Jean Chaumine e Julia Pieltant. "Shimura Modular Curves and Asymptotic Symmetric Tensor Rank of Multiplication in any Finite Field". In Algebraic Informatics, 160–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40663-8_16.
Texto completo da fonteBocci, Cristiano, e Luca Chiantini. "Symmetric Tensors". In UNITEXT, 105–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24624-2_7.
Texto completo da fonteTinder, Richard F. "Third- and Fourth-Rank Tensor Properties—Symmetry Considerations". In Tensor Properties of Solids, 95–122. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-79306-6_6.
Texto completo da fonteHess, Siegfried. "Summary: Decomposition of Second Rank Tensors". In Tensors for Physics, 75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12787-3_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Rank of symmetric tensors"
Merino-Caviedes, Susana, e Marcos Martin-Fernandez. "A general interpolation method for symmetric second-rank tensors in two dimensions". In 2008 5th IEEE International Symposium on Biomedical Imaging (ISBI 2008). IEEE, 2008. http://dx.doi.org/10.1109/isbi.2008.4541150.
Texto completo da fonteGaith, Mohamed, e Cevdet Akgoz. "On the Properties of Anisotropic Piezoelectric and Fiber Reinforced Composite Materials". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14075.
Texto completo da fonteMarmin, Arthur, Marc Castella e Jean-Christophe Pesquet. "Detecting the Rank of a Symmetric Tensor". In 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. http://dx.doi.org/10.23919/eusipco.2019.8902781.
Texto completo da fonteKyrgyzov, Olexiy, e Deniz Erdogmus. "Geometric structure of sum-of-rank-1 decompositions for n-dimensional order-p symmetric tensors". In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4541674.
Texto completo da fonteBarbier, Jean, Clement Luneau e Nicolas Macris. "Mutual Information for Low-Rank Even-Order Symmetric Tensor Factorization". In 2019 IEEE Information Theory Workshop (ITW). IEEE, 2019. http://dx.doi.org/10.1109/itw44776.2019.8989408.
Texto completo da fonteChen, Bin, e John Moreland. "Human Brain Diffusion Tensor Imaging Visualization With Virtual Reality". In ASME 2010 World Conference on Innovative Virtual Reality. ASMEDC, 2010. http://dx.doi.org/10.1115/winvr2010-3761.
Texto completo da fonteWilson, Daniel W., Elias N. Glytsis, Nile F. Hartman e Thomas K. Gaylord. "Bulk photovoltaic tensor and polarization conversion in LiNbO3". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tud8.
Texto completo da fonteKiraly, Franz J., e Andreas Ziehe. "Approximate rank-detecting factorization of low-rank tensors". In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638397.
Texto completo da fonteWang, Xiaofei, e Carmeliza Navasca. "Adaptive Low Rank Approximation for Tensors". In 2015 IEEE International Conference on Computer Vision Workshop (ICCVW). IEEE, 2015. http://dx.doi.org/10.1109/iccvw.2015.124.
Texto completo da fonteRajbhandari, Samyam, Akshay Nikam, Pai-Wei Lai, Kevin Stock, Sriram Krishnamoorthy e P. Sadayappan. "CAST: Contraction Algorithm for Symmetric Tensors". In 2014 43nd International Conference on Parallel Processing (ICPP). IEEE, 2014. http://dx.doi.org/10.1109/icpp.2014.35.
Texto completo da fonteRelatórios de organizações sobre o assunto "Rank of symmetric tensors"
Khalfan, H., R. H. Byrd e R. B. Schnabel. A Theoretical and Experimental Study of the Symmetric Rank One Update. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1990. http://dx.doi.org/10.21236/ada233965.
Texto completo da fonte