Artigos de revistas sobre o tema "Refuse-derived fuel fly ash"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Refuse-derived fuel fly ash".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Adefeso, Ismail Babatunde, Daniel Ikhu-Omoregbe e Yusuf M. Isa. "Preliminary Assessment of Heavy Metals in Refuse Derived Fuel (RDF) for Thermochemical Conversion". Journal of Solid Waste Technology and Management 47, n.º 2 (1 de maio de 2021): 297–305. http://dx.doi.org/10.5276/jswtm/2021.297.
Texto completo da fonteŚciubidło, A., I. Majchrzak-Kucęba e M. Niedzielska. "Comparison of fly ash from co-combustion of coal/solid recovered fuel (SRF) and coal/refuse derived fuel (RDF)." Journal of Physics: Conference Series 1398 (novembro de 2019): 012015. http://dx.doi.org/10.1088/1742-6596/1398/1/012015.
Texto completo da fonteKwon, Seung-Jun, Yong-Sik Yoon, Sang-Min Park e Hyeok-Jung Kim. "Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash". Journal of the Korea Concrete Institute 28, n.º 6 (30 de dezembro de 2016): 647–53. http://dx.doi.org/10.4334/jkci.2016.28.6.647.
Texto completo da fonteSinkkonen, Seija, Raili Mäkelä, Raili Vesterinen e Mirja Lahtiperä. "Chlorinated dioxins and dibenzothiophenes in fly ash samples from combustion of peat, wood chips, refuse derived fuel and liquid packaging boards". Chemosphere 31, n.º 2 (julho de 1995): 2629–35. http://dx.doi.org/10.1016/0045-6535(95)94372-u.
Texto completo da fonteMlonka-Mędrala, Agata, Tadeusz Dziok, Aneta Magdziarz e Wojciech Nowak. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal". Energy 234 (novembro de 2021): 121229. http://dx.doi.org/10.1016/j.energy.2021.121229.
Texto completo da fonteParzentny, Henryk R., e Leokadia Róg. "Distribution of Some Ecotoxic Elements in Fuel and Solid Combustion Residues in Poland". Energies 13, n.º 5 (3 de março de 2020): 1131. http://dx.doi.org/10.3390/en13051131.
Texto completo da fonteArenillas, A., K. M. Smith, T. C. Drage e C. E. Snape. "CO2 capture using some fly ash-derived carbon materials". Fuel 84, n.º 17 (dezembro de 2005): 2204–10. http://dx.doi.org/10.1016/j.fuel.2005.04.003.
Texto completo da fonteLuo, Biwei, Pengfei Li, Yan Li, Jun Ji, Dongsheng He, Qifeng Tian e Yichang Chen. "Feasibility of fly ash as fluxing agent in mid- and low-grade phosphate rock carbothermal reduction and its reaction kinetics". Green Processing and Synthesis 10, n.º 1 (1 de janeiro de 2021): 157–68. http://dx.doi.org/10.1515/gps-2021-0008.
Texto completo da fonteGao, Pingqiang, Yan Zhang e Lin Zhao. "Synthetic zeolites derived from fly ash as effective mineral sorbents for diesel fuel spill remediation". Clays and Clay Minerals 64, n.º 5 (1 de outubro de 2016): 552–59. http://dx.doi.org/10.1346/ccmn.2016.064035.
Texto completo da fonteCzuma, Natalia, Katarzyna Zarębska, Monika Motak, Maria Elena Gálvez e Patrick Da Costa. "Ni/zeolite X derived from fly ash as catalysts for CO2 methanation". Fuel 267 (maio de 2020): 117139. http://dx.doi.org/10.1016/j.fuel.2020.117139.
Texto completo da fonteHower, James C., e J. David Robertson. "Chemistry and petrology of fly ash derived from the co-combustion of western United States coal and tire-derived fuel". Fuel Processing Technology 85, n.º 5 (abril de 2004): 359–77. http://dx.doi.org/10.1016/j.fuproc.2003.05.003.
Texto completo da fonteKim, Dongju, Dong-kyoo Park, Yong-taek Lim, Soo-nam Park, Yeong-Su Park e Kyunghyun Kim. "Combustion Melting Characterisation of Solid Fuel Obtained from Sewage Sludge". Energies 14, n.º 4 (3 de fevereiro de 2021): 805. http://dx.doi.org/10.3390/en14040805.
Texto completo da fonteShah, Bhavna, Ritesh Tailor e Ajay Shah. "Sorptive sequestration of 2-chlorophenol by zeolitic materials derived from bagasse fly ash". Journal of Chemical Technology & Biotechnology 86, n.º 10 (12 de maio de 2011): 1265–75. http://dx.doi.org/10.1002/jctb.2646.
Texto completo da fonteNarayanan, K. S., e R. B. Anand. "Experimental Investigation on Optimisation of Parameters of Thermo-Catalytic Cracking Process for H.D.P.E. & P.P. Mixed Plastic Waste with Synthesized Alumina-Silica Catalysts". Applied Mechanics and Materials 592-594 (julho de 2014): 307–11. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.307.
Texto completo da fonteChoi, Min Ju, Yong Joo Kim, Hyeok Jung Kim e Jae Jun Lee. "Performance evaluation of the use of tire-derived fuel fly ash as mineral filler in hot mix asphalt concrete". Journal of Traffic and Transportation Engineering (English Edition) 7, n.º 2 (abril de 2020): 249–58. http://dx.doi.org/10.1016/j.jtte.2019.05.004.
Texto completo da fonteHower, James C., John G. Groppo, Heileen Hsu-Kim e Ross K. Taggart. "Distribution of rare earth elements in fly ash derived from the combustion of Illinois Basin coals". Fuel 289 (abril de 2021): 119990. http://dx.doi.org/10.1016/j.fuel.2020.119990.
Texto completo da fonteQin, Linbo, Jia Song, Yangshuo Liang, Bo Zhao, Geng Chen e Jun Han. "Preparation of Fe and Ca Enriched Sorbents Derived from Coal Fly Ash for Arsenic Capture from Flue Gas". Energy & Fuels 35, n.º 14 (6 de julho de 2021): 11203–9. http://dx.doi.org/10.1021/acs.energyfuels.1c00874.
Texto completo da fonteLiu, Xiuru, Yiqing Sun, Fangming Xue, Jingcheng Su, jiangjiang Qu e Feng Chen. "Research Progress on Control and Removal Technology of SO3 of Coal-fired Power Plants". E3S Web of Conferences 118 (2019): 01036. http://dx.doi.org/10.1051/e3sconf/201911801036.
Texto completo da fonteAlgoufi, Y. T., e B. H. Hameed. "Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash". Fuel Processing Technology 126 (outubro de 2014): 5–11. http://dx.doi.org/10.1016/j.fuproc.2014.04.004.
Texto completo da fonteSefidari, Hamid, Bo Lindblom, Lars-Olof Nordin e Henrik Wiinikka. "The Feasibility of Replacing Coal with Biomass in Iron-Ore Pelletizing Plants with Respect to Melt-Induced Slagging". Energies 13, n.º 20 (16 de outubro de 2020): 5386. http://dx.doi.org/10.3390/en13205386.
Texto completo da fonteHower, James C., John G. Groppo, Heileen Hsu-Kim e Ross K. Taggart. "Signatures of rare earth element distributions in fly ash derived from the combustion of Central Appalachian, Illinois, and Powder River basin coals". Fuel 301 (outubro de 2021): 121048. http://dx.doi.org/10.1016/j.fuel.2021.121048.
Texto completo da fonteHwa, Tay Joo. "Leachate of fly ash derived from refuse incineration". Environmental Monitoring and Assessment 19, n.º 1-3 (1991): 157–64. http://dx.doi.org/10.1007/bf00401308.
Texto completo da fonteIzidoro, Juliana De Carvalho, Caio Miranda, Davi Castanho, Carlos Rossati, Felipe Campello, Sabine Guilhen, Denise Fungaro e Shaobin Wang. "Physical and chemical characteristics of feed coal and its by-products from a Brazilian thermoelectric power plant". Journal of Applied Materials and Technology 1, n.º 1 (14 de julho de 2019): 1–14. http://dx.doi.org/10.31258/jamt.1.1.1-14.
Texto completo da fonteXie, J. J., e P. M. Walsh. "Erosion-Oxidation of Carbon Steel in the Convection Section of an Industrial Boiler Cofiring Coal–Water Fuel and Natural Gas". Journal of Engineering for Gas Turbines and Power 119, n.º 3 (1 de julho de 1997): 717–22. http://dx.doi.org/10.1115/1.2817048.
Texto completo da fonteAyas, Gizem, e Hakan Öztop. "Thermal analysis of different Refuse Derived Fuels (RDFs) samples". Thermal Science, n.º 00 (2021): 249. http://dx.doi.org/10.2298/tsci201010249a.
Texto completo da fonteKoukouzas, N., J. Hämäläinen, D. Papanikolaou, A. Tourunen e T. Jäntti. "MINERALOGICAL AND CHEMICAL COMPOSITION OF CFB FLY ASH DERIVED FROM CO-COMBUSTION OF XYLITE AND BIOMASS". Bulletin of the Geological Society of Greece 40, n.º 2 (1 de janeiro de 2007): 859. http://dx.doi.org/10.12681/bgsg.16733.
Texto completo da fonteNorton, Glenn A., Kenneth L. Malaby e Edward L. DeKalb. "Chemical characterization of ash produced during combustion of refuse-derived fuel with coal". Environmental Science & Technology 22, n.º 11 (novembro de 1988): 1279–83. http://dx.doi.org/10.1021/es00176a005.
Texto completo da fonteFerrer, Eduardo, Martti Aho, Jaani Silvennoinen e Riku-Ville Nurminen. "Fluidized bed combustion of refuse-derived fuel in presence of protective coal ash". Fuel Processing Technology 87, n.º 1 (dezembro de 2005): 33–44. http://dx.doi.org/10.1016/j.fuproc.2005.04.004.
Texto completo da fonteChen, Kuo Wei. "Manufacture of RDF (Refuse Derived Fuel) by Carbon Ash from the Waste Tire Pyrolysis Resource Chemical Plant". Advanced Materials Research 852 (janeiro de 2014): 764–67. http://dx.doi.org/10.4028/www.scientific.net/amr.852.764.
Texto completo da fonteÂriņa, Dace, Rūta Bendere, Gintaras Denafas, Jānis Kalnačs e Mait Kriipsalu. "Characterization of Refuse Derived Fuel Production from Municipal Solid Waste: The Case Studies in Latvia and Lithuania". Environmental and Climate Technologies 24, n.º 3 (1 de novembro de 2020): 112–18. http://dx.doi.org/10.2478/rtuect-2020-0090.
Texto completo da fonteChen, Kuo Wei. "The Wide-Applicant Feasibility Study of RDF (Refuse Derived Fuel) - Example for Carbon Ash after the Waste Tire Pyrolysis T". Advanced Materials Research 852 (janeiro de 2014): 768–71. http://dx.doi.org/10.4028/www.scientific.net/amr.852.768.
Texto completo da fonteArina, Dace, e Ausma Orupe. "Characteristics of mechanically sorted municipal wastes and their suitability for production of refuse derived fuel". Scientific Journal of Riga Technical University. Environmental and Climate Technologies 8, n.º -1 (9 de novembro de 2012): 18–23. http://dx.doi.org/10.2478/v10145-012-0003-0.
Texto completo da fonteChaerul, Mochammad, e Afifah Fakhrunnisa. "Refuse Derived Fuel Production through Biodrying Process (Case study: Solid Waste from Canteens)". Jurnal Bahan Alam Terbarukan 9, n.º 1 (24 de junho de 2020): 69–80. http://dx.doi.org/10.15294/jbat.v9i1.24609.
Texto completo da fonteTripathi, Priyanka, e Lakshminarayana Rao. "Single particle and packed bed combustion characteristics of high ash and high plastic content refuse derived fuel". Fuel 308 (janeiro de 2022): 121983. http://dx.doi.org/10.1016/j.fuel.2021.121983.
Texto completo da fonteŚwiechowski, Kacper, Ewa Syguła, Jacek A. Koziel, Paweł Stępień, Szymon Kugler, Piotr Manczarski e Andrzej Białowiec. "Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel". Data 5, n.º 2 (21 de maio de 2020): 48. http://dx.doi.org/10.3390/data5020048.
Texto completo da fonteMasu, Smaranda, Luminita Cojocariu, Eugenia Grecu, Florica Morariu, Despina Maria Bordean, Marinel Horablaga, Lucian Nita e Simona Nita. "Lolium Perenne - A Phytoremediation Option in Case of Total Petroleum Hydrocarbons Polluted Soils". Revista de Chimie 69, n.º 5 (15 de junho de 2018): 1110–14. http://dx.doi.org/10.37358/rc.18.5.6270.
Texto completo da fonteKalnacs, J., R. Bendere, A. Murasovs, D. Arina, A. Antipovs, A. Kalnacs e L. Sprince. "The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF". Latvian Journal of Physics and Technical Sciences 55, n.º 1 (1 de fevereiro de 2018): 35–43. http://dx.doi.org/10.2478/lpts-2018-0004.
Texto completo da fonteManeewan, Somchai, Weera Punin, Chantana Punlek, Atthakorn Thongtha e Tanongkiat Kiatsiriroat. "Feasibility of Refuse Derived Fuel 5 Composed of the Mechanical Biological Waste Treatment and Crude Oil Sludge". Applied Mechanics and Materials 448-453 (outubro de 2013): 699–708. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.699.
Texto completo da fonteKimambo, Offor N., e P. Subramanian. "Energy efficient refuse derived fuel (RDF) from municipal solid waste rejects: a case for Coimbatore". International Journal of Environment 3, n.º 2 (30 de maio de 2014): 205–15. http://dx.doi.org/10.3126/ije.v3i2.10530.
Texto completo da fonteKupka, Tomasz, Marco Mancini, Michael Irmer e Roman Weber. "Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel". Fuel 87, n.º 12 (setembro de 2008): 2824–37. http://dx.doi.org/10.1016/j.fuel.2008.01.024.
Texto completo da fontePandeline, Deborah A., Paul J. Cosentino, Edward H. Kalajian e Mario F. Chavez. "Shear and Deformation Characteristics of Municipal Waste Combustor Bottom Ash for Highway Applications". Transportation Research Record: Journal of the Transportation Research Board 1577, n.º 1 (janeiro de 1997): 101–8. http://dx.doi.org/10.3141/1577-13.
Texto completo da fonteO'Doherty, T., D. J. Morgan e N. Syred. "A Multi Fuelled Cyclone Combustor". Energy & Environment 3, n.º 4 (junho de 1992): 401–16. http://dx.doi.org/10.1177/0958305x9200300405.
Texto completo da fonteBrna, Theodore G., e James D. Kilgroe. "Polychlorinated dibenzo-p-dioxins and dibenzofurans: Removal from flue gas and distribution in ash/residue of a refuse-derived fuel combustor". Chemosphere 25, n.º 7-10 (outubro de 1992): 1381–86. http://dx.doi.org/10.1016/0045-6535(92)90157-m.
Texto completo da fonteRania, Mutiara Fadila, I. Gede Eka Lesmana e Eka Maulana. "ANALISIS POTENSI REFUSE DERIVED FUEL (RDF) DARI SAMPAH PADA TEMPAT PEMBUANGAN AKHIR (TPA) DI KABUPATEN TEGAL SEBAGAI BAHAN BAKAR INCINERATOR PIROLISIS". SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin 13, n.º 1 (1 de junho de 2019): 51. http://dx.doi.org/10.24853/sintek.13.1.51-59.
Texto completo da fonteBajracharya, Nripendra, Bhakta Bahadur Ale, Ramesh Man Singh e Tri Ratna Bajracharya. "Waste to Energy: An Assessment of Application of the Selective Fuel for Applications in Industries using a Mixture of "A" Grade Coal and Municipal Solid Waste". Journal of the Institute of Engineering 12, n.º 1 (6 de março de 2017): 129–42. http://dx.doi.org/10.3126/jie.v12i1.16887.
Texto completo da fonteBenlamoudi, Ali, Aeslina Abdul Kadir e Mohamed Khodja. "Incorporation of Alternative Fuels and Raw Materials (AFR) to Produce a Sustainable Cement". International Journal of Engineering & Technology 7, n.º 4.30 (30 de novembro de 2018): 136. http://dx.doi.org/10.14419/ijet.v7i4.30.22079.
Texto completo da fonteGulyurtlu, I., T. Crujeira, M. H. Lopes, P. Abelha, D. Boavida, J. Seabra, R. Gonçalves, C. Sargaço e I. Cabrita. "The Study of Combustion of Municipal Waste in a Fluidized Bed Combustor". Journal of Energy Resources Technology 128, n.º 2 (30 de janeiro de 2006): 123–28. http://dx.doi.org/10.1115/1.2191507.
Texto completo da fonteDiallo, Amadou Dioulde Donghol, Ma’an Fahmi Rashid Alkhatib, Md Zahangir Alam e Maizirwan Mel. "ENHANCEMENT OF THE CALORIFIC VALUE OF EM1707PTY FRUIT BUNCH (EFB) BY ADDING MUNICIPAL SOLID WASTE AS SOLID FUEL IN GASIFICATION PROCESS". IIUM Engineering Journal 22, n.º 2 (4 de julho de 2021): 10–20. http://dx.doi.org/10.31436/iiumej.v22i2.1566.
Texto completo da fonteGokhalea, A. J., e G. Burnet. "By-Product Sulfur from the Stabilization of Coal Solid Wastes". MRS Proceedings 136 (1988). http://dx.doi.org/10.1557/proc-136-55.
Texto completo da fonteMohamad, Ashaari B., e David L. Gress. "The Effect of Substituting Rdf on the Physical and Environmental Properties of Coal Fly Ash". MRS Proceedings 136 (1988). http://dx.doi.org/10.1557/proc-136-223.
Texto completo da fonte