Literatura científica selecionada sobre o tema "Reinforced concrete construction Ductility"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Reinforced concrete construction Ductility".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Reinforced concrete construction Ductility"

1

Mo, Y. L., and S. F. Perng. "Behavior of Framed Shearwalls Made of Corrugated Steel under Lateral Load Reversals." Advances in Structural Engineering 3, no. 3 (July 2000): 255–62. http://dx.doi.org/10.1260/1369433001502184.

Texto completo da fonte
Resumo:
Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and low-rise shearwalls are governed by shear. If a structure includes both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete framed shearwalls is very limited. The experiments on framed shearwalls made of corrugated steel was recently reported. It was found that the ductility of framed shearwalls can be greatly improved if the thickness of the corrugated steel wall
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hosen, Md Akter, Mahaad Issa Shammas, Sukanta Kumer Shill, Safat Al-Deen, Mohd Zamin Jumaat, and Huzaifa Hashim. "Ductility Enhancement of Sustainable Fibrous-Reinforced High-Strength Lightweight Concrete." Polymers 14, no. 4 (February 14, 2022): 727. http://dx.doi.org/10.3390/polym14040727.

Texto completo da fonte
Resumo:
To limit the cross-sectional size of concrete structures, high-strength, lightweight concrete is preferred for the design and construction of structural elements. However, the main drawback of high-strength, lightweight concrete is its brittleness over normal-weight concrete. The ductility of concrete is a crucial factor, which plays an important role when the concrete structures are subjected to extreme situations, such as earthquakes and wind. This study aims to improve the ductility of high-strength, lightweight concrete by incorporating steel fibers. The palm oil clinker (POC)-based, high-
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bai, Z. Z., and F. T. K. Au. "Ductility of symmetrically reinforced concrete columns." Magazine of Concrete Research 61, no. 5 (June 2009): 345–57. http://dx.doi.org/10.1680/macr.2008.00149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Du, Chuang, Xiao Ming Yang, and Ning Li Li. "Performance Analysis of Concrete-Filled Steel Tube Column and Reinforced Concrete Column under Axial Compression." Advanced Materials Research 446-449 (January 2012): 82–85. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.82.

Texto completo da fonte
Resumo:
In this paper, a comparative investigation into the behavior of concrete-filled steel tube column and reinforced concrete column with the same quantity of material and cross-section sizes under axial load have been undertaken using the finite element method. Both is analyzed to compare the axial compression performance,including bearing capacity, ductility and their mechanism. The results of the analyses clearly exhibit that bearing capacity of concrete-filled steel tube column is higher about 25% than that of reinforced concrete column. Under the same conditions, ductility of concrete-filled
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Xiang, Ping, ZH Deng, YS Su, HP Wang, and YF Wan. "Experimental investigation on joints between steel-reinforced concrete T-shaped column and reinforced concrete beam under bidirectional low-cyclic reversed loading." Advances in Structural Engineering 20, no. 3 (July 29, 2016): 446–60. http://dx.doi.org/10.1177/1369433216653841.

Texto completo da fonte
Resumo:
Steel-reinforced concrete T-shaped column-beam structure system has superiorities of both steel-reinforced structure and special-shaped column structure. This research focuses on steel-reinforced concrete T-shaped column-beam joint design and experimentally investigates seismic behaviors of the proposed joints. Pseudo-static tests are carried out on three steel-reinforced concrete T-shaped column-reinforced concrete beam joints and one reinforced concrete T-shaped column-reinforced concrete beam joint. The experiments were conducted under bidirectional low-cyclic reversed loading to simulate r
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Renić, Tvrtko, and Tomislav Kišiček. "Ductility of Concrete Beams Reinforced with FRP Rebars." Buildings 11, no. 9 (September 21, 2021): 424. http://dx.doi.org/10.3390/buildings11090424.

Texto completo da fonte
Resumo:
Concrete beams reinforced with FRP rebars have greater durability than standard steel reinforced elements. The main disadvantage of using FRP rebars is the low ductility of elements which may be unacceptable in certain situations. There are several different ways of increasing the ductility of concrete elements, which are analyzed in this paper. They are compared based on efficiency, influence on durability and ease of construction. Less analyzed and tested methods are given more attention to try and expand the current knowledge and possibilities. For methods that lack experimental data, theor
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kuang, J. S., and A. I. Atanda. "Enhancing ductility of reinforced concrete frame buildings." Proceedings of the Institution of Civil Engineers - Structures and Buildings 158, no. 4 (August 2005): 253–65. http://dx.doi.org/10.1680/stbu.2005.158.4.253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Alzeebaree, Radhwan, Abdulkadir Çevik, Alaa Mohammedameen, Anıl Niş, and Mehmet Eren Gülşan. "Mechanical performance of FRP-confined geopolymer concrete under seawater attack." Advances in Structural Engineering 23, no. 6 (November 14, 2019): 1055–73. http://dx.doi.org/10.1177/1369433219886964.

Texto completo da fonte
Resumo:
In the study, mechanical properties and durability performance of confined/unconfined geopolymer concrete and ordinary concrete specimens were investigated under ambient and seawater environments. Some of the specimens were confined by carbon fiber and basalt fiber–reinforced polymer fabric materials with one layer and three layers under chloride and ambient environments to observe mechanical strength contribution and durability performances of these hybrid types of materials. These fiber-reinforced polymer fabric materials were also evaluated in terms of retrofit purposes especially in the ma
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Yuan, Huang, Huan-Peng Hong, Huang Deng, and Yu Bai. "Displacement ductility of staged construction-steel tube-reinforced concrete columns." Construction and Building Materials 188 (November 2018): 1137–48. http://dx.doi.org/10.1016/j.conbuildmat.2018.08.141.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kwan, A. K. H., J. C. M. Ho, and H. J. Pam. "Flexural strength and ductility of reinforced concrete beams." Proceedings of the Institution of Civil Engineers - Structures and Buildings 152, no. 4 (November 2002): 361–69. http://dx.doi.org/10.1680/stbu.2002.152.4.361.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Reinforced concrete construction Ductility"

1

Gravina, Rebecca Jane. "Non-linear overload behaviour and ductility of reinforced concrete flexural members containing 500MPa grade steel reinforcement." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phg777.pdf.

Texto completo da fonte
Resumo:
Includes corrigenda (inserted at front) and list of publications published as a result of this research. Includes bibliographical references (leaves 192-199) Investigates the overload behaviour and modes of collapse of reinforced concrete flexural members containing 500MPa grade reinforcing steel and evaluates the adequacy of current ductility requirements for design according to AS 3600 to ensure strength and safety.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zaina, Mazen Said Civil &amp Environmental Engineering Faculty of Engineering UNSW. "Strength and ductility of fibre reinforced high strength concrete columns." Awarded by:University of New South Wales. School of Civil and Environmental Engineering, 2005. http://handle.unsw.edu.au/1959.4/22054.

Texto completo da fonte
Resumo:
The main structural objectives in column design are strength and ductility. For higher strength concretes these design objectives are offset by generally poor concrete ductility and early spalling of the concrete cover. When fibres are added to the concrete the post peak characteristics are enhanced, both in tension and in compression. Most of the available experimental data, on fibre reinforced concrete and fibre reinforced high strength concrete columns, suggest that an improvement in both ductility and load carrying capacity due to the inclusion of the fibres. In this thesis the ductility
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Chen, Mantai, and 陈满泰. "Combined effects of strain gradient and concrete strength on flexural strength and ductility design of RC beams and columns." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206429.

Texto completo da fonte
Resumo:
The stress-strain relationship of concrete in flexure is one of the essential parameters in assessing the flexural strength and ductility of reinforced concrete (RC) structures. An overview of previous research studies revealed that the presence of strain gradient would affect the maximum concrete stress and respective strain developed in flexure. Previously, researchers have conducted experimental studies to investigate and quantify the strain gradient effect on maximum concrete stress and respective strain by developing two strain-gradient-dependent factors k3 and ko for modifying the flexu
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chau, Siu-lee. "Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B31997661.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chau, Siu-lee, and 周小梨. "Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B31997661.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Broms, Carl Erik. "Concrete flat slabs and footings : Design method for punching and detailing for ductility." Doctoral thesis, KTH, Brobyggnad inkl stålbyggnad, 2005. http://innopac.lib.kth.se/search/.

Texto completo da fonte
Resumo:
Thesis (Ph.D.)--Royal Institute of Technology (Stockholm, Sweden), 2005.<br>"ISRN KTH/BKN/B-80-SE." "Dept. of Civil and Architectural Engineering, Division of Structural Design and Bridges, Royal Institute of Technology, Stockholm. " Includes bibliographical references. Available from the Royal Institute of Technology (Sweden) Library as a .pdf document http://www.lib.kth.se/main/eng/
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yuksel, Bahadir S. "Experimental Investigation Of The Seismic Behavior Of Panel Buildings." Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/2/1070309/index.pdf.

Texto completo da fonte
Resumo:
Shear-wall dominant multi-story reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In 1999, two severe urban earthquakes struck Kocaeli and D&uuml<br>zce provinces in Turkey with magnitudes (Mw) 7.4 and 7.1, respectively. These catastrophes caused substantial structural damage, casualties and loss of lives. In the aftermath of these destructive earthquakes, neither demolished nor damaged shear-wall dominant buildings constructed by tunnel form techniques
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Soesianawati, M. T. "Limited ductility design of reinforced concrete columns." Thesis, University of Canterbury. Department of Civil Engineering, 1986. http://hdl.handle.net/10092/3643.

Texto completo da fonte
Resumo:
This report describes an experimental and analytical investigation of the strength and ductility of reinforced concrete columns. Four columns of square cross-section were tested under axial compression loading and cyclic lateral loading applied at mid-height which simulated seismic loading. The main variable investigated was the quantity of transverse confining steel used, which ranged between 17 to 46 percent of the NZS 3101:1982 recommended quantity for ductile detailing. The experimental results are reported in the form of lateral loaddisplacement and lateral load-curvatures hysteresis loop
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kim, SangHun Aboutaha Riyad S. "Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete." Related Electronic Resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2003. http://wwwlib.umi.com/cr/syr/main.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lau, Tak-bun Denvid. "Flexural ductility improvement of FRP-reinforced concrete members." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38907756.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Reinforced concrete construction Ductility"

1

Dhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Dhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

F, Limbrunner George, ed. Reinforced concrete design. 3rd ed. Englewood Cliffs, N.J: Prentice Hall, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

F, Limbrunner George, ed. Reinforced concrete design. 4th ed. Upper Saddle River, N.J: Prentice Hall, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

F, Limbrunner George, ed. Reinforced concrete design. 2nd ed. Englewood Cliffs, N.J: Prentice-Hall, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wang, Chu-Kia. Reinforced concrete design. 4th ed. New York: Harper & Row, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Wang, Chu-Kia. Reinforced concrete design. 5th ed. New York, NY: HarperCollins, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wang, Chu-Kia. Reinforced concrete design. 6th ed. Menlo Park, Calif: Addison-Wesley, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

O, Aghayere Abi, ed. Reinforced concrete design. 7th ed. Upper Saddle River, NJ: Prentice Hall, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wang, Chu-Kia. Reinforced concrete design. 7th ed. Hoboken, NJ: John Wiley & Sons, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Reinforced concrete construction Ductility"

1

Dancygier, Avraham N., and Erez Berkover. "Effect of Steel Fibers on the Flexural Ductility of Lightly Reinforced Concrete Beams." In Innovative Materials and Techniques in Concrete Construction, 197–207. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1997-2_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mosley, W. H., J. H. Bungey, and R. Hulse. "Composite construction." In Reinforced Concrete Design, 350–73. London: Macmillan Education UK, 1999. http://dx.doi.org/10.1007/978-1-349-14911-7_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Van Gysel, Ann, Tom Molkens, and Inge Deygers. "Ductility of Heavily Reinforced Concrete Beams." In High Tech Concrete: Where Technology and Engineering Meet, 553–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_66.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mitchell, Charles F., and George A. Mitchell. "Reinforced Concrete or Ferro-Concrete." In Building Construction and Drawing 1906, 502–15. 4th ed. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003261674-11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Dickey, Walter L. "Reinforced Concrete Masonry Construction." In Handbook of Concrete Engineering, 632–62. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0857-8_17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Garrido Vazquez, E., A. Naked Haddad, E. Linhares Qualharini, L. Amaral Alves, and I. Amorim Féo. "Pathologies in Reinforced Concrete Structures." In Sustainable Construction, 213–28. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0651-7_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kollerathu, Jacob Alex. "Curvature Ductility of Reinforced Masonry Walls and Reinforced Concrete Walls." In Lecture Notes in Civil Engineering, 9–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2826-9_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bussell, Michael. "Conservation of Concrete and Reinforced Concrete." In Structures & Construction in Historic Building Conservation, 192–210. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470691816.ch11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Setareh, Mehdi, and Robert Darvas. "Metric System in Reinforced Concrete Design and Construction." In Concrete Structures, 591–605. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24115-9_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Vera-Agullo, J., V. Chozas-Ligero, D. Portillo-Rico, M. J. García-Casas, A. Gutiérrez-Martínez, J. M. Mieres-Royo, and J. Grávalos-Moreno. "Mortar and Concrete Reinforced with Nanomaterials." In Nanotechnology in Construction 3, 383–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00980-8_52.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Reinforced concrete construction Ductility"

1

""Ultra-High Performance Concrete With Ductility: Design, Prototyping And Manufacturing Of Panels And Boxes"." In SP-224: Thin Reinforced Cement-Based Products and Construction Systems. American Concrete Institute, 2004. http://dx.doi.org/10.14359/13409.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Tabsh, Sami W. "Effect of Construction Minor Defects on the Ductility of Reinforced Concrete Drilled Shafts." In The 4th World Congress on Civil, Structural, and Environmental Engineering. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icsect19.125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Katayama, Norinobu, Kazuhiko Fujisaki, Takehisa Ueno, Ryutaro Onishi, and Isamu Yoshitake. "Laboratory And Field Tests On A Prefabricated Steel-Bar Mesh-Panel System For Continuously-Reinforced-Concrete Pavement (CRCP)." In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/fbj2y5fe.

Texto completo da fonte
Resumo:
The decline in the number of persons of working age is a social problem in Japan. This is a particularly serious concern for workers in the construction field; construction systems should be considered for productivity improvements. Prefabrication systems are an effective method for shortening construction cycles and times. In fact, various precast concrete members have been employed to realize more rapid construction and improvements in quality. Using precast concrete members is difficult because jointless roads are preferable for highway pavement. Continuously reinforced concrete pavement (C
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Güler, Soner, Fuat Korkut, Namik Yaltay, and Demet Yavuz. "Axial behaviour of concrete filled steel tube stub columns: a review." In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7602.

Texto completo da fonte
Resumo:
Concrete-filled steel tubular (CFST) columns are widely used in construction of high-rise buildings and peers of bridges to increase the lateral stiffness of the buildings, the axial load capacity, ductility, toughness, and resistance of corrosion of the columns. The CFST columns have much superior characteristics compared with traditionally reinforced concrete columns. The position of the concrete and steel tube in the cross-section of the CFST column is the most appropriate solution in terms of the strength and ductility. The steel tube, which is placed outside of the cross-section of the co
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Zhang, Fei, and Jianxun Ma. "Experimental Study on Hybrid Masonry Structure with RC Frame under Lateral Reversed Cyclic Loading." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0142.

Texto completo da fonte
Resumo:
&lt;p&gt;As a new type of structural system, hybrid masonry (HM) structure with reinforced concrete (RC) frame is constructed of reinforced block masonry wall and reinforced concrete frame. This structural system combines the advantages of reinforced concrete frame structure and reinforced concrete block masonry structure, also overcomes some limitations of them. In order to study the seismic performance of the structural system, the lateral reversed cyclic loading experiment on the HM structure with RC frame was conducted. In the experiment, two specimens that were constructed with different
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Han, Lin-Hai, Dan-Yang Ma, and Kan Zhou. "Concrete-encased CFST structures: behaviour and application." In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7109.

Texto completo da fonte
Resumo:
Concrete-encased CFST (concrete-filled steel tube) is a kind of composite structure comprised of a CFST component and a reinforced concrete (RC) component. The concrete encased CFST possesses superior ductility and higher stiffness. They are gaining popularity in high-rise buildings, large-span structures, bridges, subway stations and workshops. This paper initially reviews the recent research on concrete-encased CFST structures. The major research findings on bond performance, static performance, dynamic performance and fire resistance are presented. This paper also outlines some construction
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kumar, Aravind S., Bharati Raj J, and Keerthy M. Simon. "Shear Strength of Steel Fiber Reinforced Reactive Powder Concrete & Geopolymer Concrete – A Comparison." In International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.43.

Texto completo da fonte
Resumo:
Reactive Powder Concrete (RPC) is an ultra-high strength concrete composite prepared by the replacement of natural aggregates with quartz powder, silica fume and steel fibers. The use of RPC yields high strength, high ductile concrete with optimized material use and contributes to economic, sustainable and ecofriendly constructions. Past research has indicated that RPC offers significant improvement in the mechanical and physical properties owing to its homogenous composition with less defects of voids and microcracks. This leads to enhancement of ultimate load capacity of RPC members and resu
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Thapa, Aashish, Mustafa Mashal, and Mahesh Acharya. "Large-Scale Flexural Testing of Concrete Beams Reinforced with Conventional Steel and Titanium Alloy Bars." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0272.

Texto completo da fonte
Resumo:
&lt;p&gt;The research focuses on the use of Titanium Alloy Bars (TiABs) in concrete cap beams. TiABs offer good ductility, high strength, lightweight, superior corrosion resistance, lower overstrength, and better fatigue performance. TiABs have recently been used in several existing bridges in Oregon and Texas in the United States to increase shear and flexural capacities of concrete beams. While TiABs have been implemented in retrofitting of existing bridges in the United States, their application in new structures have not been tested and compared against conventional steel rebars. Idaho Sta
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Elesawy, Alaa, and Mustafa Batikha. "Structural behaviour of steel plate infilled outrigger wall system." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.1265.

Texto completo da fonte
Resumo:
&lt;p&gt;The resistance of lateral loads is historically the main challenge in tall buildings. Structural Engineers always strive to find a redundant lateral resisting system that provides the required structural resistance, unleashes the architectural expression, optimizes the quantities and improves the constructability. Because of the increased stiffness together with the overturning resistance they provide and being a cost-effective solution, the outrigger systems are very efficient against the lateral loads in tall buildings. Conventionally, steel truss and reinforced concrete walls are u
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Landler, Josef, and Oliver Fischer. "Punching Shear Capacity of Steel Fiber Reinforced Concrete Slab- Column Connections." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0467.

Texto completo da fonte
Resumo:
&lt;p&gt;To design flat slabs directly supported on columns, the punching shear resistance of the slab is a main factor. It can be increased in the vicinity of the slab-column connection with punching shear reinforcement, like bent up bars or shear studs, to bear the high reaction forces. However, the usage of punching shear reinforcement requires the knowledge of special design rules and often leads to problems and deficiencies in construction.&lt;/p&gt;&lt;p&gt;Fiber reinforced concrete seems to be a promising alternative to conventional punching shear reinforcement. To investigate the load
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Reinforced concrete construction Ductility"

1

Duthinh, Dat, and Monica Starnes. Strength and ductility of concrete beams reinforced with carbon FRP and steel. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6830.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Huang, Cihang, Yen-Fang Su, and Na Lu. Self-Healing Cementitious Composites (SHCC) with Ultrahigh Ductility for Pavement and Bridge Construction. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317403.

Texto completo da fonte
Resumo:
Cracks and their formations in concrete structures have been a common and long-lived problem, mainly due to the intrinsic brittleness of the concrete. Concrete structures, such as rigid pavement and bridge decks, are prone to deformations and deteriorations caused by shrinkage, temperature fluctuation, and traffic load, which can affect their service life. Rehabilitation of concrete structures is expensive and challenging—not only from maintenance viewpoints but also because they cannot be used for services during maintenance. It is critical to significantly improve the ductility of concrete t
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Roesler, Jeffery, Sachindra Dahal, Dan Zollinger, and W. Jason Weiss. Summary Findings of Re-engineered Continuously Reinforced Concrete Pavement: Volume 1. Illinois Center for Transportation, May 2021. http://dx.doi.org/10.36501/0197-9191/21-011.

Texto completo da fonte
Resumo:
This research project conducted laboratory testing on the design and impact of internal curing on concrete paving mixtures with supplementary cementitious materials and evaluated field test sections for the performance of crack properties and CRCP structure under environmental and FWD loading. Three experimental CRCP sections on Illinois Route 390 near Itasca, IL and two continuously reinforced concrete beams at UIUC ATREL test facilities were constructed and monitored. Erodibility testing was performed on foundation materials to determine the likelihood of certain combinations of materials as
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ramey, M. R., and G. Daie-e. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel. Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/6382922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ragalwar, Ketan, William Heard, Brett Williams, Dhanendra Kumar, and Ravi Ranade. On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41940.

Texto completo da fonte
Resumo:
Steel fibers are typically used in ultra-high performance concretes (UHPC) to impart flexural ductility and increase fracture toughness. However, the mechanical properties of the steel fibers are underutilized in UHPC, as evidenced by the fact that most of the steel fibers pull out of a UHPC matrix largely undamaged during tensile or flexural tests. This research aims to improve the bond between steel fibers and a UHPC matrix by using steel wool. The underlying mechanism for fiber-matrix bond improvement is the reinforcement of the matrix tunnel, surrounding the steel fibers, by steel wool. Si
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Nema, Arpit, and Jose Restrep. Low Seismic Damage Columns for Accelerated Bridge Construction. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, December 2020. http://dx.doi.org/10.55461/zisp3722.

Texto completo da fonte
Resumo:
This report describes the design, construction, and shaking table response and computation simulation of a Low Seismic-Damage Bridge Bent built using Accelerated Bridge Construction methods. The proposed bent combines precast post-tensioned columns with precast foundation and bent cap to simplify off- and on-site construction burdens and minimize earthquake-induced damage and associated repair costs. Each column consists of reinforced concrete cast inside a cylindrical steel shell, which acts as the formwork, and the confining and shear reinforcement. The column steel shell is engineered to fa
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bell, Matthew, Rob Ament, Damon Fick, and Marcel Huijser. Improving Connectivity: Innovative Fiber-Reinforced Polymer Structures for Wildlife, Bicyclists, and/or Pedestrians. Nevada Department of Transportation, September 2022. http://dx.doi.org/10.15788/ndot2022.09.

Texto completo da fonte
Resumo:
Engineers and ecologists continue to explore new methods and adapt existing techniques to improve highway mitigation measures that increase motorist safety and conserve wildlife species. Crossing structures, overpasses and underpasses, combined with fences, are some of the most highly effective mitigation measures employed around the world to reduce wildlife-vehicle collisions (WVCs) with large animals, increase motorist safety, and maintain habitat connectivity across transportation networks for many other types and sizes of wildlife. Published research on structural designs and materials for
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Scheerer, Silke, and Manfred Curbach, eds. Leicht Bauen mit Beton – Grundlagen für das Bauen der Zukunft mit bionischen und mathematischen Entwurfsprinzipien (Abschlussbericht). Technische Universität Dresden, Institut für Massivbau, 2022. http://dx.doi.org/10.25368/2022.162.

Texto completo da fonte
Resumo:
Reinforced concrete is the most widely used building material today. It can be produced universally and cheaply almost anywhere in the world. However, this is accompanied by high CO2 emissions and considerable consumption of natural resources. In the DFG Priority Programme 1542, a wide variety of approaches were therefore investigated to find out how the material can be used more efficiently and thus how concrete construction can be made fit for the future. This final report on SPP 1542 “Concrete Light“ (funded from 2011 to 2022) presents the most important results.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Diggs-McGee, Brandy, Eric Kreiger, Megan Kreiger, and Michael Case. Print time vs. elapsed time : a temporal analysis of a continuous printing operation. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41422.

Texto completo da fonte
Resumo:
In additive construction, ambitious goals to fabricate a concrete building in less than 24 hours are attempted. In the field, this goal relies on a metric of print time to make this conclusion, which excludes rest time and delays. The task to complete a building in 24 hours was put to the test with the first attempt at a fully continuous print of a structurally reinforced additively constructed concrete (ACC) building. A time series analysis was performed during the construction of a 512 ft2 (16’x32’x9.25’) building to explore the effect of delays on the completion time. This analysis included
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

THE STRUCTURAL AND CONSTRUCTION PERFORMANCES OF A LARGE-SPAN HALF STEEL-PLATE-REINFORCED CONCRETE HOLLOW ROOF. The Hong Kong Institute of Steel Construction, March 2019. http://dx.doi.org/10.18057/ijasc.2019.15.1.3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!