Artigos de revistas sobre o tema "Rhodopsin proteins"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Rhodopsin proteins".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Meng, Chao Luo, Gang Dai e Tatsuo Iwasa. "Identification of Microbial Rhodopsin Genes from Salt Lake in Inner Mongolia". Advanced Materials Research 518-523 (maio de 2012): 380–83. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.380.
Texto completo da fonteShen, Libing, Chao Chen, Hongxiang Zheng e Li Jin. "The Evolutionary Relationship between Microbial Rhodopsins and Metazoan Rhodopsins". Scientific World Journal 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/435651.
Texto completo da fonteTam, Beatrice M., Orson L. Moritz, Lawrence B. Hurd e David S. Papermaster. "Identification of an Outer Segment Targeting Signal in the Cooh Terminus of Rhodopsin Using Transgenic Xenopus laevis". Journal of Cell Biology 151, n.º 7 (25 de dezembro de 2000): 1369–80. http://dx.doi.org/10.1083/jcb.151.7.1369.
Texto completo da fonteFu, Hsu-Yuan, Yu-Cheng Lin, Yung-Ning Chang, Hsiaochu Tseng, Ching-Che Huang, Kang-Cheng Liu, Ching-Shin Huang et al. "A Novel Six-Rhodopsin System in a Single Archaeon". Journal of Bacteriology 192, n.º 22 (27 de agosto de 2010): 5866–73. http://dx.doi.org/10.1128/jb.00642-10.
Texto completo da fontePoupault, Clara, Diane Choi, Khanh Lam-Kamath, Deepshe Dewett, Ansa Razzaq, Joseph Bunker, Alexis Perry, Irene Cho e Jens Rister. "A combinatorial cis-regulatory logic restricts color-sensing Rhodopsins to specific photoreceptor subsets in Drosophila". PLOS Genetics 17, n.º 6 (23 de junho de 2021): e1009613. http://dx.doi.org/10.1371/journal.pgen.1009613.
Texto completo da fonteChuang, Jen-Zen, e Ching-Hwa Sung. "The Cytoplasmic Tail of Rhodopsin Acts as a Novel Apical Sorting Signal in Polarized MDCK Cells". Journal of Cell Biology 142, n.º 5 (7 de setembro de 1998): 1245–56. http://dx.doi.org/10.1083/jcb.142.5.1245.
Texto completo da fonteTarlachkov, Sergey V., Taras V. Shevchuk, Maria del Carmen Montero-Calasanz e Irina P. Starodumova. "Diversity of rhodopsins in cultivated bacteria of the family Geodermatophilaceae associated with non-aquatic environments". Bioinformatics 36, n.º 6 (11 de novembro de 2019): 1668–72. http://dx.doi.org/10.1093/bioinformatics/btz840.
Texto completo da fonteAhrendt, Steven R., Edgar Mauricio Medina, Chia-en A. Chang e Jason E. Stajich. "Exploring the binding properties and structural stability of an opsin in the chytridSpizellomyces punctatususing comparative and molecular modeling". PeerJ 5 (27 de abril de 2017): e3206. http://dx.doi.org/10.7717/peerj.3206.
Texto completo da fonteShtyrov, Andrey A., Dmitrii M. Nikolaev, Vladimir N. Mironov, Andrey V. Vasin, Maxim S. Panov, Yuri S. Tveryanovich e Mikhail N. Ryazantsev. "Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima". International Journal of Molecular Sciences 22, n.º 6 (16 de março de 2021): 3029. http://dx.doi.org/10.3390/ijms22063029.
Texto completo da fonteKonno, Masae, Yumeka Yamauchi, Keiichi Inoue e Hideki Kandori. "Expression analysis of microbial rhodopsin-like genes in Guillardia theta". PLOS ONE 15, n.º 12 (3 de dezembro de 2020): e0243387. http://dx.doi.org/10.1371/journal.pone.0243387.
Texto completo da fonteChiang, Wei-Chieh, Carissa Messah e Jonathan H. Lin. "IRE1 directs proteasomal and lysosomal degradation of misfolded rhodopsin". Molecular Biology of the Cell 23, n.º 5 (março de 2012): 758–70. http://dx.doi.org/10.1091/mbc.e11-08-0663.
Texto completo da fontePenn, Wesley D., Andrew G. McKee, Charles P. Kuntz, Hope Woods, Veronica Nash, Timothy C. Gruenhagen, Francis J. Roushar et al. "Probing biophysical sequence constraints within the transmembrane domains of rhodopsin by deep mutational scanning". Science Advances 6, n.º 10 (março de 2020): eaay7505. http://dx.doi.org/10.1126/sciadv.aay7505.
Texto completo da fonteAsano, Y., S. Nakamura, S. Ishida, K. Azuma e T. Shinozawa. "Rhodopsin-like proteins in planarian eye and auricle: detection and functional analysis". Journal of Experimental Biology 201, n.º 9 (1 de maio de 1998): 1263–71. http://dx.doi.org/10.1242/jeb.201.9.1263.
Texto completo da fonteKirpichnikov, M. P., e М. А. Оstrovsky. "Optogenetics and vision". Вестник Российской академии наук 89, n.º 2 (20 de março de 2019): 125–30. http://dx.doi.org/10.31857/s0869-5873892125-130.
Texto completo da fonteKim, Benjamin, e Michael Z. Lin. "Optobiology: optical control of biological processes via protein engineering". Biochemical Society Transactions 41, n.º 5 (23 de setembro de 2013): 1183–88. http://dx.doi.org/10.1042/bst20130150.
Texto completo da fonteInoue, Keiichi. "Shining light on rhodopsin selectivity: How do proteins decide whether to transport H+ or Cl–?" Journal of Biological Chemistry 295, n.º 44 (30 de outubro de 2020): 14805–6. http://dx.doi.org/10.1074/jbc.h120.016032.
Texto completo da fonteChurch, Jonathan R., Jógvan Magnus Haugaard Olsen e Igor Schapiro. "The Impact of Retinal Configuration on the Protein–Chromophore Interactions in Bistable Jumping Spider Rhodopsin-1". Molecules 27, n.º 1 (23 de dezembro de 2021): 71. http://dx.doi.org/10.3390/molecules27010071.
Texto completo da fonteHuang, Huai-Wei, e Hyung Don Ryoo. "Drosophila fabp is required for light-dependent Rhodopsin-1 clearance and photoreceptor survival". PLOS Genetics 17, n.º 10 (29 de outubro de 2021): e1009551. http://dx.doi.org/10.1371/journal.pgen.1009551.
Texto completo da fonteZernii, Evgeni Yu, Konstantin E. Komolov, Sergei E. Permyakov, Tatiana Kolpakova, Daniele Dell'orco, Annika Poetzsch, Ekaterina L. Knyazeva et al. "Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase". Biochemical Journal 435, n.º 2 (29 de março de 2011): 441–50. http://dx.doi.org/10.1042/bj20110013.
Texto completo da fonteKishigami, A., T. Ogasawara, Y. Watanabe, M. Hirata, T. Maeda, F. Hayashi e Y. Tsukahara. "Inositol-1,4,5-trisphosphate-binding proteins controlling the phototransduction cascade of invertebrate visual cells". Journal of Experimental Biology 204, n.º 3 (1 de fevereiro de 2001): 487–93. http://dx.doi.org/10.1242/jeb.204.3.487.
Texto completo da fonteKakakhel, Mashal, Lars Tebbe, Mustafa S. Makia, Shannon M. Conley, David M. Sherry, Muayyad R. Al-Ubaidi e Muna I. Naash. "Syntaxin 3 is essential for photoreceptor outer segment protein trafficking and survival". Proceedings of the National Academy of Sciences 117, n.º 34 (10 de agosto de 2020): 20615–24. http://dx.doi.org/10.1073/pnas.2010751117.
Texto completo da fonteYonamine, Ikuko, Takeshi Bamba, Niraj K. Nirala, Nahid Jesmin, Teresa Kosakowska-Cholody, Kunio Nagashima, Eiichiro Fukusaki, Jairaj K. Acharya e Usha Acharya. "Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors". Journal of Cell Biology 192, n.º 4 (14 de fevereiro de 2011): 557–67. http://dx.doi.org/10.1083/jcb.201004098.
Texto completo da fonteIslam, Md Sirajul, James P. Gaston e Matthew A. B. Baker. "Fluorescence Approaches for Characterizing Ion Channels in Synthetic Bilayers". Membranes 11, n.º 11 (4 de novembro de 2021): 857. http://dx.doi.org/10.3390/membranes11110857.
Texto completo da fonteSakurai, Keisuke, Akishi Onishi, Hiroo Imai, Osamu Chisaka, Yoshiki Ueda, Jiro Usukura, Kei Nakatani e Yoshinori Shichida. "Physiological Properties of Rod Photoreceptor Cells in Green-sensitive Cone Pigment Knock-in Mice". Journal of General Physiology 130, n.º 1 (25 de junho de 2007): 21–40. http://dx.doi.org/10.1085/jgp.200609729.
Texto completo da fonteGeneva, Ivayla I., Han Yen Tan e Peter D. Calvert. "Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways". Molecular Biology of the Cell 28, n.º 4 (15 de fevereiro de 2017): 554–66. http://dx.doi.org/10.1091/mbc.e16-07-0549.
Texto completo da fonteBelousov, Anatolii, Ivan Maslov, Polina Khorn, Alexander Mishin, Mikhail Baranov, Thomas Gensch e Valentin Borshchevskiy. "Abstract P-10: Solvatochromic Fluorescent Dyes Tested for Spectroscopic Measurements of Protein Conformational Dynamics". International Journal of Biomedicine 11, Suppl_1 (1 de junho de 2021): S15. http://dx.doi.org/10.21103/ijbm.11.suppl_1.p10.
Texto completo da fontePojer, Jonathan M., Abdul Jabbar Saiful Hilmi, Shu Kondo e Kieran F. Harvey. "Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye". PLOS Genetics 17, n.º 6 (7 de junho de 2021): e1009146. http://dx.doi.org/10.1371/journal.pgen.1009146.
Texto completo da fonteWieland, Thomas, Isabel Ulibarri, Klaus Aktories, Peter Gierschik e Karl H. Jakobs. "Interaction of small G proteins with photoexcited rhodopsin". FEBS Letters 263, n.º 2 (24 de abril de 1990): 195–98. http://dx.doi.org/10.1016/0014-5793(90)81372-u.
Texto completo da fonteXu, Xian-Zhong Shawn, Atish Choudhury, Xiaoling Li e Craig Montell. "Coordination of an Array of Signaling Proteins through Homo- and Heteromeric Interactions Between PDZ Domains and Target Proteins". Journal of Cell Biology 142, n.º 2 (27 de julho de 1998): 545–55. http://dx.doi.org/10.1083/jcb.142.2.545.
Texto completo da fonteShirzad-Wasei, Nazhat, Jenny van Oostrum, Petra H. M. Bovee-Geurts, Lisanne J. A. Kusters, Giel J. C. G. M. Bosman e Willem J. DeGrip. "Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification". Biological Chemistry 396, n.º 8 (1 de agosto de 2015): 903–15. http://dx.doi.org/10.1515/hsz-2015-0100.
Texto completo da fonteNeedham, David M., Susumu Yoshizawa, Toshiaki Hosaka, Camille Poirier, Chang Jae Choi, Elisabeth Hehenberger, Nicholas A. T. Irwin et al. "A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators". Proceedings of the National Academy of Sciences 116, n.º 41 (23 de setembro de 2019): 20574–83. http://dx.doi.org/10.1073/pnas.1907517116.
Texto completo da fonteKunduri, Govind, Changqing Yuan, Velayoudame Parthibane, Katherine M. Nyswaner, Ritu Kanwar, Kunio Nagashima, Steven G. Britt et al. "Phosphatidic acid phospholipase A1 mediates ER–Golgi transit of a family of G protein–coupled receptors". Journal of Cell Biology 206, n.º 1 (7 de julho de 2014): 79–95. http://dx.doi.org/10.1083/jcb.201405020.
Texto completo da fonteKLAASSEN, Corné H. W., Petra H. M. BOVEE-GEURTS, Godelieve L. J. DECALUWÉ e Willem J. DEGRIP. "Large-scale production and purification of functional recombinant bovine rhodopsin with the use of the baculovirus expression system". Biochemical Journal 342, n.º 2 (24 de agosto de 1999): 293–300. http://dx.doi.org/10.1042/bj3420293.
Texto completo da fonteVan Eps, Ned, Christian Altenbach, Lydia N. Caro, Naomi R. Latorraca, Scott A. Hollingsworth, Ron O. Dror, Oliver P. Ernst e Wayne L. Hubbell. "Gi- and Gs-coupled GPCRs show different modes of G-protein binding". Proceedings of the National Academy of Sciences 115, n.º 10 (20 de fevereiro de 2018): 2383–88. http://dx.doi.org/10.1073/pnas.1721896115.
Texto completo da fonteDizhoor, Alexander M., Elina R. Nekrasova e Pavel P. Philippov. "The binding of G proteins to immobilized delipidated rhodopsin". Biochemical and Biophysical Research Communications 162, n.º 1 (julho de 1989): 544–49. http://dx.doi.org/10.1016/0006-291x(89)92031-7.
Texto completo da fonteFujita, Jun, Norika Sakurai e Takao Shinozawa. "Presence of rhodopsin-like proteins in the planarian head". Hydrobiologia 227, n.º 1 (dezembro de 1991): 93–94. http://dx.doi.org/10.1007/bf00027587.
Texto completo da fonteSchopf, Krystina, Thomas K. Smylla e Armin Huber. "Immunocytochemical Labeling of Rhabdomeric Proteins inDrosophilaPhotoreceptor Cells Is Compromised by a Light-dependent Technical Artifact". Journal of Histochemistry & Cytochemistry 67, n.º 10 (27 de junho de 2019): 745–57. http://dx.doi.org/10.1369/0022155419859870.
Texto completo da fonteBesaw, Jessica E., Wei-Lin Ou, Takefumi Morizumi, Bryan T. Eger, Juan D. Sanchez Vasquez, Jessica H. Y. Chu, Andrew Harris, Leonid S. Brown, R. J. Dwayne Miller e Oliver P. Ernst. "The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants". Journal of Biological Chemistry 295, n.º 44 (23 de julho de 2020): 14793–804. http://dx.doi.org/10.1074/jbc.ra120.014118.
Texto completo da fonteGrime, Rachael L., Richard T. Logan, Stephanie A. Nestorow, Pooja Sridhar, Patricia C. Edwards, Christopher G. Tate, Bert Klumperman et al. "Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles". Nanoscale 13, n.º 31 (2021): 13519–28. http://dx.doi.org/10.1039/d1nr02419a.
Texto completo da fontePaolicchi, Fabio, Lara Lombardi, Nello Ceccarelli e Roberto Lorenzi. "Are retinal and retinal-binding proteins involved in stomatal response to blue light?" Functional Plant Biology 32, n.º 12 (2005): 1135. http://dx.doi.org/10.1071/fp05054.
Texto completo da fonteGerrard, Elliot, Eshita Mutt, Takashi Nagata, Mitsumasa Koyanagi, Tilman Flock, Elena Lesca, Gebhard F. X. Schertler, Akihisa Terakita, Xavier Deupi e Robert J. Lucas. "Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish". Proceedings of the National Academy of Sciences 115, n.º 24 (23 de maio de 2018): 6201–6. http://dx.doi.org/10.1073/pnas.1721333115.
Texto completo da fonteDeretic, D., e D. S. Papermaster. "Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells." Journal of Cell Biology 113, n.º 6 (15 de junho de 1991): 1281–93. http://dx.doi.org/10.1083/jcb.113.6.1281.
Texto completo da fonteYun, Ji-Hye, Mio Ohki, Jae-Hyun Park, Naito Ishimoto, Ayana Sato-Tomita, Wonbin Lee, Zeyu Jin et al. "Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family". Science Advances 6, n.º 6 (fevereiro de 2020): eaay2042. http://dx.doi.org/10.1126/sciadv.aay2042.
Texto completo da fonteNakao, Yutaka, Kazumi Shimono, Takashi Kikukawa, Kunio Ihara e Naoki Kamo. "1P090 Photochemistry of Sensory Rhodopsin III from Haloarcula marismortui(HmSRIII)(Membrane proteins,Poster Presentations)". Seibutsu Butsuri 47, supplement (2007): S46. http://dx.doi.org/10.2142/biophys.47.s46_1.
Texto completo da fonteYe, Shixin, Caroline Köhrer, Thomas Huber, Manija Kazmi, Pallavi Sachdev, Elsa C. Y. Yan, Aditi Bhagat, Uttam L. RajBhandary e Thomas P. Sakmar. "Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis". Journal of Biological Chemistry 283, n.º 3 (8 de novembro de 2007): 1525–33. http://dx.doi.org/10.1074/jbc.m707355200.
Texto completo da fonteUlshafer, R. J., W. W. Hauswirth e A. van der Langerijt. "EM immunocytochemical localization of rhodopsin and IRBP during retinal development". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6 de agosto de 1989): 800–801. http://dx.doi.org/10.1017/s0424820100155979.
Texto completo da fonteKhorana, H. G. "Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin." Proceedings of the National Academy of Sciences 90, n.º 4 (15 de fevereiro de 1993): 1166–71. http://dx.doi.org/10.1073/pnas.90.4.1166.
Texto completo da fonteCastiglione, Gianni M., Frances E. Hauser, Brian S. Liao, Nathan K. Lujan, Alexander Van Nynatten, James M. Morrow, Ryan K. Schott, Nihar Bhattacharyya, Sarah Z. Dungan e Belinda S. W. Chang. "Evolution of nonspectral rhodopsin function at high altitudes". Proceedings of the National Academy of Sciences 114, n.º 28 (22 de junho de 2017): 7385–90. http://dx.doi.org/10.1073/pnas.1705765114.
Texto completo da fonteDeretic, D., e D. S. Papermaster. "Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors". Journal of Cell Science 106, n.º 3 (1 de novembro de 1993): 803–13. http://dx.doi.org/10.1242/jcs.106.3.803.
Texto completo da fonteDeretic, D., L. A. Huber, N. Ransom, M. Mancini, K. Simons e D. S. Papermaster. "rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis". Journal of Cell Science 108, n.º 1 (1 de janeiro de 1995): 215–24. http://dx.doi.org/10.1242/jcs.108.1.215.
Texto completo da fonte