Artigos de revistas sobre o tema "RNA-Targeted small molecules"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "RNA-Targeted small molecules".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chen, Shi-Jie, and Yuanzhe Zhou. "Harnessing Computational Approaches for RNA-Targeted Drug Discovery." RNA NanoMed 1, no. 1 (2024): 1–15. https://doi.org/10.59566/isrnn.2024.0101001.
Texto completo da fonteXu, Ling, Kevin Chung, Tianshuo Liu, and Anna Marie Pyle. "Structural insights into RNA targeting with de novo small molecule." Structural Dynamics 12, no. 2_Supplement (2025): A41. https://doi.org/10.1063/4.0000350.
Texto completo da fonteCostales, Matthew G., Haruo Aikawa, Yue Li, et al. "Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer." Proceedings of the National Academy of Sciences 117, no. 5 (2020): 2406–11. http://dx.doi.org/10.1073/pnas.1914286117.
Texto completo da fonteNagano, Konami, Takashi Kamimura, and Gota Kawai. "Interaction between a fluoroquinolone derivative and RNAs with a single bulge." Journal of Biochemistry 171, no. 2 (2021): 239–44. http://dx.doi.org/10.1093/jb/mvab124.
Texto completo da fonteSun, Saisai, Jianyi Yang, and Zhaolei Zhang. "RNALigands: a database and web server for RNA–ligand interactions." RNA 28, no. 2 (2021): 115–22. http://dx.doi.org/10.1261/rna.078889.121.
Texto completo da fonteTadesse, Kisanet, and Raphael I. Benhamou. "Targeting MicroRNAs with Small Molecules." Non-Coding RNA 10, no. 2 (2024): 17. http://dx.doi.org/10.3390/ncrna10020017.
Texto completo da fonteAngelbello, Alicia J., Suzanne G. Rzuczek, Kendra K. Mckee, et al. "Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model." Proceedings of the National Academy of Sciences 116, no. 16 (2019): 7799–804. http://dx.doi.org/10.1073/pnas.1901484116.
Texto completo da fonteWu, Liping, Jing Pan, Vala Thoroddsen, et al. "Novel Small-Molecule Inhibitors of RNA Polymerase III." Eukaryotic Cell 2, no. 2 (2003): 256–64. http://dx.doi.org/10.1128/ec.2.2.256-264.2003.
Texto completo da fonteAlagia, Adele, Jana Tereňová, Ruth F. Ketley, Arianna Di Fazio, Irina Chelysheva, and Monika Gullerova. "Small vault RNA1-2 modulates expression of cell membrane proteins through nascent RNA silencing." Life Science Alliance 6, no. 6 (2023): e202302054. http://dx.doi.org/10.26508/lsa.202302054.
Texto completo da fonteFrancois-Moutal, Liberty, David Donald Scott, and May Khanna. "Direct targeting of TDP-43, from small molecules to biologics: the therapeutic landscape." RSC Chemical Biology 2, no. 4 (2021): 1158–66. http://dx.doi.org/10.1039/d1cb00110h.
Texto completo da fonteSmola, Matthew J., Krista Marran, Sarah E. Thompson, et al. "Abstract 680: Leveraging an RNA-targeting platform for the discovery of cell-active c-MYC mRNA-binding small molecules." Cancer Research 84, no. 6_Supplement (2024): 680. http://dx.doi.org/10.1158/1538-7445.am2024-680.
Texto completo da fonteNadir, Khan1 Farzeen Shaba2 Abu Sehma3 Mohd Faizan4 Rumana Siddqui5 Dr. Mohd Abid6*. "A Comprehensive Review About Exploring the Functional Diversity, Structural Complexity, And Interconnectivity of RNA Molecules: Implications for Gene Regulation, Cellular Processes, And Therapeutic Innovations." International Journal of Pharmaceutical Sciences 3, no. 5 (2025): 2171–80. https://doi.org/10.5281/zenodo.15398199.
Texto completo da fonteMartín-Villamil, María, Isaías Sanmartín, Ángela Moreno, and José Gallego. "Pharmacophore-Based Discovery of Viral RNA Conformational Modulators." Pharmaceuticals 15, no. 6 (2022): 748. http://dx.doi.org/10.3390/ph15060748.
Texto completo da fonteMirón-Barroso, Sofía, Joana S. Correia, Adam E. Frampton, et al. "Polymeric Carriers for Delivery of RNA Cancer Therapeutics." Non-Coding RNA 8, no. 4 (2022): 58. http://dx.doi.org/10.3390/ncrna8040058.
Texto completo da fonteHardigan, Andrew A., Brian S. Roberts, Dianna E. Moore, Ryne C. Ramaker, Angela L. Jones, and Richard M. Myers. "CRISPR/Cas9-targeted removal of unwanted sequences from small-RNA sequencing libraries." Nucleic Acids Research 47, no. 14 (2019): e84-e84. http://dx.doi.org/10.1093/nar/gkz425.
Texto completo da fonteTran, Anh Thi-Phuong, Duc Huy Vo, Audrey Di Giorgio, and Maria Duca. "ID: 1083 Targeting the production of oncogenic miRNAs using synthetic small molecules." Biomedical Research and Therapy 4, S (2017): 170. http://dx.doi.org/10.15419/bmrat.v4is.357.
Texto completo da fonteAkbar, Sehrish, Yao Wei, and Mu-Qing Zhang. "RNA Interference: Promising Approach to Combat Plant Viruses." International Journal of Molecular Sciences 23, no. 10 (2022): 5312. http://dx.doi.org/10.3390/ijms23105312.
Texto completo da fontePalazzotti, Deborah, Martina Sguilla, Giuseppe Manfroni, Violetta Cecchetti, Andrea Astolfi, and Maria Letizia Barreca. "Small Molecule Drugs Targeting Viral Polymerases." Pharmaceuticals 17, no. 5 (2024): 661. http://dx.doi.org/10.3390/ph17050661.
Texto completo da fonteLiu, Yuan, Mads B. Larsen, Bo Lin, et al. "Abstract 1805: Identification of a small molecule that induces targeted protein degradation of ADAR1." Cancer Research 83, no. 7_Supplement (2023): 1805. http://dx.doi.org/10.1158/1538-7445.am2023-1805.
Texto completo da fonteRuzi, Zukela, Daxiong Han, and Kailibinuer Aierken. "Advanced strategies for screening and identifying RNA-targeted small molecules: Bridging therapeutic potential and innovation." Results in Chemistry 15 (May 2025): 102305. https://doi.org/10.1016/j.rechem.2025.102305.
Texto completo da fonteWeller, Céline N., and Jonathan Hall. "Oligonucleotide-based PROTACs to Degrade RNA- and DNA-Binding Proteins." CHIMIA 79, no. 3 (2025): 167–71. https://doi.org/10.2533/chimia.2025.167.
Texto completo da fonteCotten, M., G. Schaffner, and M. L. Birnstiel. "Ribozyme, antisense RNA, and antisense DNA inhibition of U7 small nuclear ribonucleoprotein-mediated histone pre-mRNA processing in vitro." Molecular and Cellular Biology 9, no. 10 (1989): 4479–87. http://dx.doi.org/10.1128/mcb.9.10.4479-4487.1989.
Texto completo da fonteCotten, M., G. Schaffner, and M. L. Birnstiel. "Ribozyme, antisense RNA, and antisense DNA inhibition of U7 small nuclear ribonucleoprotein-mediated histone pre-mRNA processing in vitro." Molecular and Cellular Biology 9, no. 10 (1989): 4479–87. http://dx.doi.org/10.1128/mcb.9.10.4479.
Texto completo da fonteAla, Ugo. "Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story." Cells 9, no. 7 (2020): 1574. http://dx.doi.org/10.3390/cells9071574.
Texto completo da fonteThaper, Daksh L., Ravi Munuganti, Shaghayegh Nouruzi, et al. "First-in-field small molecule inhibitors targeting BRN2 as a therapeutic strategy for small cell prostate cancer." Journal of Clinical Oncology 37, no. 7_suppl (2019): 260. http://dx.doi.org/10.1200/jco.2019.37.7_suppl.260.
Texto completo da fonteRimoldi, O. J., B. Raghu, M. K. Nag, and G. L. Eliceiri. "Three new small nucleolar RNAs that are psoralen cross-linked in vivo to unique regions of pre-rRNA." Molecular and Cellular Biology 13, no. 7 (1993): 4382–90. http://dx.doi.org/10.1128/mcb.13.7.4382-4390.1993.
Texto completo da fonteRimoldi, O. J., B. Raghu, M. K. Nag, and G. L. Eliceiri. "Three new small nucleolar RNAs that are psoralen cross-linked in vivo to unique regions of pre-rRNA." Molecular and Cellular Biology 13, no. 7 (1993): 4382–90. http://dx.doi.org/10.1128/mcb.13.7.4382.
Texto completo da fonteTao, Wei, Arif Yurdagul, Na Kong та ін. "siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice". Science Translational Medicine 12, № 553 (2020): eaay1063. http://dx.doi.org/10.1126/scitranslmed.aay1063.
Texto completo da fonteFei, Yue, Tünde Nyikó, and Attila Molnar. "Non-perfectly matching small RNAs can induce stable and heritable epigenetic modifications and can be used as molecular markers to trace the origin and fate of silencing RNAs." Nucleic Acids Research 49, no. 4 (2021): 1900–1913. http://dx.doi.org/10.1093/nar/gkab023.
Texto completo da fonteRojas-Cruz, Alexis Felipe, and Clara Isabel Bermúdez-Santana. "Computational Prediction of RNA–RNA Interactions between Small RNA Tracks from Betacoronavirus Nonstructural Protein 3 and Neurotrophin Genes during Infection of an Epithelial Lung Cancer Cell Line: Potential Role of Novel Small Regulatory RNA." Viruses 15, no. 8 (2023): 1647. http://dx.doi.org/10.3390/v15081647.
Texto completo da fonteAlonso-Valenteen, Felix, Sayuri Pacheco, Dustin Srinivas, et al. "HER3-targeted protein chimera forms endosomolytic capsomeres and self-assembles into stealth nucleocapsids for systemic tumor homing of RNA interference in vivo." Nucleic Acids Research 47, no. 21 (2019): 11020–43. http://dx.doi.org/10.1093/nar/gkz900.
Texto completo da fonteGoldberg, Zelanna, Christian Maine, Gabrielle P. Dailey, et al. "Abstract 6403: A self-replicating RNA precision medicine approach to overcoming resistance to endocrine therapy in ER+BC." Cancer Research 83, no. 7_Supplement (2023): 6403. http://dx.doi.org/10.1158/1538-7445.am2023-6403.
Texto completo da fonteLi, Quan, Yanan Wang, Zhihui Sun, Haiyang Li, and Huan Liu. "The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development." International Journal of Molecular Sciences 25, no. 14 (2024): 7680. http://dx.doi.org/10.3390/ijms25147680.
Texto completo da fonteServan de Almeida, Renata, Djénéba Keita, Geneviève Libeau, and Emmanuel Albina. "Control of ruminant morbillivirus replication by small interfering RNA." Journal of General Virology 88, no. 8 (2007): 2307–11. http://dx.doi.org/10.1099/vir.0.82981-0.
Texto completo da fonteAshander, Liam M., Binoy Appukuttan, Yuefang Ma, Dione Gardner-Stephen, and Justine R. Smith. "Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study." Mediators of Inflammation 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/7945848.
Texto completo da fonteLavender, Helen, Kevin Brady, Frances Burden, et al. "In VitroCharacterization of the Activity of PF-05095808, a Novel Biological Agent for Hepatitis C Virus Therapy." Antimicrobial Agents and Chemotherapy 56, no. 3 (2011): 1364–75. http://dx.doi.org/10.1128/aac.05357-11.
Texto completo da fonteHassanzadeh, Leila, Suxiang Chen, and Rakesh Veedu. "Radiolabeling of Nucleic Acid Aptamers for Highly Sensitive Disease-Specific Molecular Imaging." Pharmaceuticals 11, no. 4 (2018): 106. http://dx.doi.org/10.3390/ph11040106.
Texto completo da fonteMadeha Maqsood, Saira Rehman, Rabia Akhtar, Zarkasha Rasheed, Tahseen ali khan, and Sidra Rao. "RNA Drug As Therapeutic Agents: A Review Based On Literature." Pakistan journal of Advances in Medicine and Medical Research 2, no. 01 (2024): 93–101. http://dx.doi.org/10.69837/pjammr.v2i01.28.
Texto completo da fonteColl-SanMartin, Laia, Veronica Davalos, David Piñeyro, et al. "Gene Amplification-Associated Overexpression of the Selenoprotein tRNA Enzyme TRIT1 Confers Sensitivity to Arsenic Trioxide in Small-Cell Lung Cancer." Cancers 13, no. 8 (2021): 1869. http://dx.doi.org/10.3390/cancers13081869.
Texto completo da fonteHagiwara, Shinji, Aaron McClelland, and Phillip Kantharidis. "MicroRNA in Diabetic Nephropathy: Renin Angiotensin, AGE/RAGE, and Oxidative Stress Pathway." Journal of Diabetes Research 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/173783.
Texto completo da fonteCattaneo, Marco, Eleonora Giagnorio, Giuseppe Lauria, and Stefania Marcuzzo. "Therapeutic Approaches for C9ORF72-Related ALS: Current Strategies and Future Horizons." International Journal of Molecular Sciences 26, no. 13 (2025): 6268. https://doi.org/10.3390/ijms26136268.
Texto completo da fonteLiu, Runhan, Jiaxin Zhou, Xiaochen Chen, et al. "Diagnostic and Therapeutic Advances of RNAs in Precision Medicine of Gastrointestinal Tumors." Biomedicines 13, no. 1 (2024): 47. https://doi.org/10.3390/biomedicines13010047.
Texto completo da fonteKalynych, Sergei, Lenka Pálková, and Pavel Plevka. "The Structure of Human Parechovirus 1 Reveals an Association of the RNA Genome with the Capsid." Journal of Virology 90, no. 3 (2015): 1377–86. http://dx.doi.org/10.1128/jvi.02346-15.
Texto completo da fonteTidwell, Elizabeth D., Ingrid R. Kilde, Suada Leskaj, and Markos Koutmos. "Fluorescent Ligand Equilibrium Displacement: A High-Throughput Method for Identification of FMN Riboswitch-Binding Small Molecules." International Journal of Molecular Sciences 25, no. 2 (2024): 735. http://dx.doi.org/10.3390/ijms25020735.
Texto completo da fonteXie, Zhengyang. "Applications and Challenges of RNA Interference Technology in Therapeutic Development." Theoretical and Natural Science 68, no. 1 (2025): 89–97. https://doi.org/10.54254/2753-8818/2025.19920.
Texto completo da fonteSimba-Lahuasi, Alvaro, Ángel Cantero-Camacho, Romel Rosales, et al. "SARS-CoV-2 Inhibitors Identified by Phenotypic Analysis of a Collection of Viral RNA-Binding Molecules." Pharmaceuticals 15, no. 12 (2022): 1448. http://dx.doi.org/10.3390/ph15121448.
Texto completo da fonteKulbay, Merve, Nicolas Tuli, Arjin Akdag, Shigufa Kahn Ali, and Cynthia X. Qian. "Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives." Journal of Clinical Medicine 13, no. 14 (2024): 4224. http://dx.doi.org/10.3390/jcm13144224.
Texto completo da fonteJoshi, Mansi, Pranay Dey, and Abhijit De. "Recent advancements in targeted protein knockdown technologies—emerging paradigms for targeted therapy." Exploration of Targeted Anti-tumor Therapy 4, no. 6 (2023): 1227–48. http://dx.doi.org/10.37349/etat.2023.00194.
Texto completo da fonteMourenza, Álvaro, Blanca Lorente-Torres, Elena Durante, et al. "Understanding microRNAs in the Context of Infection to Find New Treatments against Human Bacterial Pathogens." Antibiotics 11, no. 3 (2022): 356. http://dx.doi.org/10.3390/antibiotics11030356.
Texto completo da fonteHarrington, Lucas B., David Burstein, Janice S. Chen, et al. "Programmed DNA destruction by miniature CRISPR-Cas14 enzymes." Science 362, no. 6416 (2018): 839–42. http://dx.doi.org/10.1126/science.aav4294.
Texto completo da fonte