Literatura científica selecionada sobre o tema "RNA viruses Genetics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "RNA viruses Genetics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "RNA viruses Genetics"

1

Enami, Masayoshi. "Negative-strand RNA viruses. Reverse genetics of negative-strand RNA viruses." Uirusu 45, no. 2 (1995): 145–57. http://dx.doi.org/10.2222/jsv.45.145.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

King, Andrew M. Q. "RNA viruses do it." Trends in Genetics 3 (January 1987): 60–61. http://dx.doi.org/10.1016/0168-9525(87)90173-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Elena, Santiago F., Stéphanie Bedhomme, Purificación Carrasco, José M. Cuevas, Francisca de la Iglesia, Guillaume Lafforgue, Jasna Lalić, Àngels Pròsper, Nicolas Tromas, and Mark P. Zwart. "The Evolutionary Genetics of Emerging Plant RNA Viruses." Molecular Plant-Microbe Interactions® 24, no. 3 (March 2011): 287–93. http://dx.doi.org/10.1094/mpmi-09-10-0214.

Texto completo da fonte
Resumo:
Over the years, agriculture across the world has been compromised by a succession of devastating epidemics caused by new viruses that spilled over from reservoir species or by new variants of classic viruses that acquired new virulence factors or changed their epidemiological patterns. Viral emergence is usually associated with ecological change or with agronomical practices bringing together reservoirs and crop species. The complete picture is, however, much more complex, and results from an evolutionary process in which the main players are ecological factors, viruses' genetic plasticity, an
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Aubry, Fabien, Antoine Nougairède, Lauriane de Fabritus, Gilles Querat, Ernest A. Gould, and Xavier de Lamballerie. "Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons." Journal of General Virology 95, no. 11 (November 1, 2014): 2462–67. http://dx.doi.org/10.1099/vir.0.068023-0.

Texto completo da fonte
Resumo:
Reverse genetics is a key methodology for producing genetically modified RNA viruses and deciphering cellular and viral biological properties, but methods based on the preparation of plasmid-based complete viral genomes are laborious and unpredictable. Here, both wild-type and genetically modified infectious RNA viruses were generated in days using the newly described ISA (infectious-subgenomic-amplicons) method. This new versatile and simple procedure may enhance our capacity to obtain infectious RNA viruses from PCR-amplified genetic material.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Cuevas, Jose M., Pilar Domingo-Calap, Marianoel Pereira-Gomez, and Rafael Sanjuan. "Experimental Evolution and Population Genetics of RNA Viruses." Open Evolution Journal 3, no. 1 (May 11, 2009): 9–16. http://dx.doi.org/10.2174/1874404400903010009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Biacchesi, Stéphane. "The reverse genetics applied to fish RNA viruses." Veterinary Research 42, no. 1 (2011): 12. http://dx.doi.org/10.1186/1297-9716-42-12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Wickner, Reed B. "PRIONS AND RNA VIRUSES OFSACCHAROMYCES CEREVISIAE." Annual Review of Genetics 30, no. 1 (December 1996): 109–39. http://dx.doi.org/10.1146/annurev.genet.30.1.109.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Froissart, Rémy, Claus O. Wilke, Rebecca Montville, Susanna K. Remold, Lin Chao, and Paul E. Turner. "Co-infection Weakens Selection Against Epistatic Mutations in RNA Viruses." Genetics 168, no. 1 (September 2004): 9–19. http://dx.doi.org/10.1534/genetics.104.030205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Turner, Paul E., та Lin Chao. "Sex and the Evolution of Intrahost Competition in RNA Virus φ6". Genetics 150, № 2 (1 жовтня 1998): 523–32. http://dx.doi.org/10.1093/genetics/150.2.523.

Texto completo da fonte
Resumo:
Abstract Sex allows beneficial mutations that occur in separate lineages to be fixed in the same genome. For this reason, the Fisher-Muller model predicts that adaptation to the environment is more rapid in a large sexual population than in an equally large asexual population. Sexual reproduction occurs in populations of the RNA virus φ6 when multiple bacteriophages coinfect the same host cell. Here, we tested the model's predictions by determining whether sex favors more rapid adaptation of φ6 to a bacterial host, Pseudomonas phaseolicola. Replicate populations of φ6 were allowed to evolve in
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Swaminathan, Gokul, Julio Martin-Garcia, and Sonia Navas-Martin. "RNA viruses and microRNAs: challenging discoveries for the 21st century." Physiological Genomics 45, no. 22 (November 15, 2013): 1035–48. http://dx.doi.org/10.1152/physiolgenomics.00112.2013.

Texto completo da fonte
Resumo:
RNA viruses represent the predominant cause of many clinically relevant viral diseases in humans. Among several evolutionary advantages acquired by RNA viruses, the ability to usurp host cellular machinery and evade antiviral immune responses is imperative. During the past decade, RNA interference mechanisms, especially microRNA (miRNA)-mediated regulation of cellular protein expression, have revolutionized our understanding of host-viral interactions. Although it is well established that several DNA viruses express miRNAs that play crucial roles in their pathogenesis, expression of miRNAs by
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "RNA viruses Genetics"

1

Afsharifar, Alireza. "Characterisation of minor RNAs associated with plants infected with cucumber mosaic virus." Title page, table of contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09pha2584.pdf.

Texto completo da fonte
Resumo:
Bibliography: leaves 127-138. This thesis studies the minor double stranded RNAs (dsRNA) and single stranded RNAs (ssRNA) which are consistently associated with plants infected with Q strain of cucumber mosaic virus (Q-CMV). The investigations are focused on the structural elucidation of new RNAs which have been observed in single stranded and double stranded RNA profiles of Q strain of CMV.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Upton, John H. "The role of RNA secondary structure in replication of Nodamura virus RNA2." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Wahyuni, Wiwiek Sri. "Variation among cucumber mosaic virus (CMV) isolates and their interaction with plants." Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phw137.pdf.

Texto completo da fonte
Resumo:
Includes appendix containing journal publications co-authored by the author. Includes bibliographical references (leaves 130-151). Eighteen strains of Cucumber mosaic virus, including forteen from Australia, two from the USA, and two from Japan were used in this study.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Williams, Rhys Harold Verdon George. "Further studies on the structure and function of the cucumber mosaic virus genome : a thesis submitted to the University of Adelaide, South Australia for the degree of Doctor of Philosophy." 1988, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phw7261.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chen, Baoshan. "Encapsidation of nucleic acids by cucumovirus coat proteins /." Title page, contents and summary only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09phc5183.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Shi, Bu-Jun. "Expression and function of cucumoviral genomes." Title page, contents and summary only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phs5546.pdf.

Texto completo da fonte
Resumo:
Bibliography: leaves 104-130. The aim of this thesis is to characterise subgenomic RNAs of cucumoviruses and the functions of their encoding genes. Strains of cucumber mosaic virus (CMV) are classified into two major subgroups (I and II) on the basis of nucleotide sequence homology. The V strain of tomato aspermy virus (V-TAV) and a subgroup I CMV strain (WAII) are chosen to determine whether the 2b genes encoded by these viruses are expressed 'in vivo'. For further investigation of the 2b gene function, cDNA clones of three genomic RNAs of V-TAV are constructed. Using the infectious cDNA clon
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ligat, Julio S. "Pathology and distribution in the host of pea seed-borne mosaic virus." Title page, contents and summary only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phl723.pdf.

Texto completo da fonte
Resumo:
Includes bibliographical references (leaves 82-92). Five isolates of pea seed-borne mosaic virus were compared by host range and symptomatology on 16 pisum sativum cultivars lines, 21 lines of Lathyrus and Lens spp. and several indicator species
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hajimorad, Mohammad Reza. "Variation in alfalfa mosaic virus with special reference to its immunochemical properties." Title page, contents and summary only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09phh154.pdf.

Texto completo da fonte
Resumo:
Includes Appendix listing other publications by the author. Includes bibliographical references (leaves 134-181). Alfalfa mosaic virus was isolated from lucerne (Medicago sativa) plants with a variety of disease symptoms. Experiments showed that each isolate was biologically distinct and that the host range and symptomatology of each isolate was affected by the environmental condition.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wakeford, Laura 1956. "COMPLEMENTATION BETWEEN TEMPERATURE-SENSITIVE MUTANTS OF POLIOVIRUS." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276556.

Texto completo da fonte
Resumo:
Conditional lethal mutants of poliovirus type 1 (Mahoney) were generated by treatment with the mutagen hydroxylamine. Temperature-sensitive mutants were selected by the replica plating technique at temperatures of 33°C (permissive) and 39°C (restrictive). New mutants were generated to achieve a larger population of mutants and also to generate additional RNA- mutants in this population. These mutants were characterized by two criteria: RNA synthesis and thermal stability. RNA synthesis is measured by the accumulation of labeled uridine incorporation into trichloroacetic acid (TCA) insoluble ma
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Sheldon, Candice Claire. "Hammerhead mediated self-cleavage of plant pathogenic RNAs /." Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phs544.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "RNA viruses Genetics"

1

Perez, Daniel R., ed. Reverse Genetics of RNA Viruses. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6964-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bridgen, Anne, ed. Reverse Genetics of RNA Viruses. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Luo, Ming. Negative strand RNA virus. Singapore: World Scientific, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Holmes, Edward C. The evolution and emergence of RNA viruses. Oxford: Oxford University Press, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

The evolution and emergence of RNA viruses. Oxford: Oxford University Press, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bridgen, Anne. Reverse genetics of RNA viruses: Applications and perspectives. Chichester, West Sussex: John Wiley & Sons, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yechiel, Becker, ed. Viral messenger RNA: Transcription, processing, splicing, and molecular structure. Boston: Nijhoff, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kawaoka, Yoshihiro, ed. Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06099-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

1935-, Friedmann Theodore, and Rossi John J, eds. Gene transfer: Delivery and expression of DNA and RNA : a laboratory manual. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Holland, John J., ed. Genetic Diversity of RNA Viruses. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77011-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "RNA viruses Genetics"

1

Armesto, Maria, Kirsten Bentley, Erica Bickerton, Sarah Keep, and Paul Britton. "Coronavirus Reverse Genetics." In Reverse Genetics of RNA Viruses, 25–63. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Goodfellow, Ian. "Calicivirus Reverse Genetics." In Reverse Genetics of RNA Viruses, 91–112. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bordería, Antonio V., and Marco Vignuzzi. "Reverse Genetics and Quasispecies." In Reverse Genetics of RNA Viruses, 319–49. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ghanem, Alexander, and Karl-Klaus Conzelmann. "Reverse Genetics of Rhabdoviruses." In Reverse Genetics of RNA Viruses, 113–49. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Boyce, Mark. "Bluetongue Virus Reverse Genetics." In Reverse Genetics of RNA Viruses, 251–88. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bridgen, Anne. "Introduction." In Reverse Genetics of RNA Viruses, 1–23. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

van den Hengel, Sanne K., Iris J. C. Dautzenberg, Diana J. M. van den Wollenberg, Peter A. E. Sillevis Smitt, and Rob C. Hoeben. "Genetic Modification in Mammalian Orthoreoviruses." In Reverse Genetics of RNA Viruses, 289–317. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bridgen, Anne. "Summary and Perspectives." In Reverse Genetics of RNA Viruses, 350–74. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ploss, Alexander. "Reverse Genetic Tools to Study Hepatitis C Virus." In Reverse Genetics of RNA Viruses, 64–90. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Rennick, Linda J., and Paul Duprex. "Modification of Measles Virus and Application to Pathogenesis Studies." In Reverse Genetics of RNA Viruses, 150–99. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405338.ch6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "RNA viruses Genetics"

1

Brewer, Wesley H., Franzine D. Smith, and John C. Sanford. "Information Loss: Potential for Accelerating Natural Genetic Attenuation of RNA Viruses." In Proceedings of the Symposium. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814508728_0015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

"Preventive role of Tomato bushy stunt virus RNA-interference suppressor protein in plant immune response." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Al Khatib, Hebah A., Fatiha M. Benslimane, Israa El Bashir, Asmaa A. Al Thani, and Hadi M. Yassine. "Within-Host Diversity of SARS-Cov-2 in COVID-19 Patients with Variable Disease Severities." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0280.

Texto completo da fonte
Resumo:
Background: The ongoing pandemic of SARS-COV-2 has already infected more than eight million people worldwide. The majority of COVID-19 patients are either asymptomatic or have mild symptoms. Yet, about 15% of the cases experience severe complications and require intensive care. Factors determining disease severity are not yet fully characterized. Aim: Here, we investigated the within-host virus diversity in COVID-19 patients with different clinical manifestations. Methods: We compared SARS-COV-2 genetic diversity in 19 mild and 27 severe cases. Viral RNA was extracted from nasopharyngeal sampl
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "RNA viruses Genetics"

1

Dawson, William O., Moshe Bar-Joseph, Charles L. Niblett, Ron Gafny, Richard F. Lee, and Munir Mawassi. Citrus Tristeza Virus: Molecular Approaches to Cross Protection. United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7570551.bard.

Texto completo da fonte
Resumo:
Citrus tristeza virus (CTV) has the largest genomes among RNA viruses of plants. The 19,296-nt CTV genome codes for eleven open reading frames (ORFs) and can produce at least 19 protein products ranging in size from 6 to 401 kDa. The complex biology of CTV results in an unusual composition of CTV-specific RNAs in infected plants which includes multiple defective RNAs and mixed infections. The complex structure of CTV populations poses special problems for diagnosis, strain differentiation, and studies of pathogenesis. A manipulatable genetic system with the full-length cDNA copy of the CTV gen
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mawassi, Munir, and Valerian V. Dolja. Role of the viral AlkB homologs in RNA repair. United States Department of Agriculture, June 2014. http://dx.doi.org/10.32747/2014.7594396.bard.

Texto completo da fonte
Resumo:
AlkB proteins that repair DNA via reversing methylation damage are conserved in a broad range of prokaryotes and eukaryotes including plants. Surprisingly, AlkB-domains were discovered in the genomes of numerous plant positive-strand RNA viruses, majority of which belong to the family Flexiviridae. The major goal of this research was to reveal the AlkB functions in the viral infection cycle using a range of complementary genetic and biochemical approaches. Our hypotheses was that AlkB is required for efficient replication and genetic stability of viral RNA genomes The major objectives of the r
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bar-Joseph, Moshe, William O. Dawson, and Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.

Texto completo da fonte
Resumo:
This program focused on citrus tristeza virus (CTV), the largest and one of the most complex RNA-plant-viruses. The economic importance of this virus to the US and Israeli citrus industries, its uniqueness among RNA viruses and the possibility to tame the virus and eventually turn it into a useful tool for the protection and genetic improvement of citrus trees justify these continued efforts. Although the overall goal of this project was to study the role(s) of CTV associated defective (d)-RNAs in CTV-induced diseases, considerable research efforts had to be devoted to the engineering of the h
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chejanovsky, Nor, Diana Cox-Foster, Victoria Soroker, and Ron Ophir. Honeybee modulation of infection with the Israeli acute paralysis virus, in asymptomatic, acutely infected and CCD colonies. United States Department of Agriculture, December 2013. http://dx.doi.org/10.32747/2013.7594392.bard.

Texto completo da fonte
Resumo:
Honey bee (Apis mellifera) colony losses pose a severe risk to the food chain. The IAPV (Israeli acute paralysis virus) was correlated with CCD, a particular case of colony collapse. Honey bees severely infected with IAPV show shivering wings that progress to paralysis and subsequent death. Bee viruses, including IAPV, are widely present in honey bee colonies but often there are no pathological symptoms. Infestation of the beehive with Varroa mites or exposure to stress factors leads to significant increase in viral titers and fatal infections. We hypothesized that the honey bee is regulating/
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Vakharia, Vikram, Shoshana Arad, Yonathan Zohar, Yacob Weinstein, Shamila Yusuff, and Arun Ammayappan. Development of Fish Edible Vaccines on the Yeast and Redmicroalgae Platforms. United States Department of Agriculture, February 2013. http://dx.doi.org/10.32747/2013.7699839.bard.

Texto completo da fonte
Resumo:
Betanodaviruses are causative agents of viral nervous necrosis (VNN), a devastating disease of cultured marine fish worldwide. Betanodavirus (BTN) genome is composed of two single-stranded, positive-sense RNA molecules. The larger genomic segment, RNA1 (3.1 kb), encodes the RNA-dependent RNA polymerase, while the smaller genomic segment, RNA 2 (1.4kb), encodes the coat protein. This structural protein is the host-protective antigen of VNN which assembles to form virus-like particles (VLPs). BTNs are classified into four genotypes, designated red-spotted grouper nervous necrosis virus (RGNNV),
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Dawson, William O., and Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7586540.bard.

Texto completo da fonte
Resumo:
Citrus is one of the major agricultural crops common to Israel and the United States, important in terms of nutrition, foreign exchange, and employment. The economy of both citrus industries have been chronically plagued by diseases caused by Citrus tristeza virus (CTV). The short term solution until virus-resistant plants can be used is the use of mild strain cross-protection. We are custom designing "ideal" protecting viruses to immunize trees against severe isolates of CTV by purposely inoculating existing endangered trees and new plantings to be propagated as infected (protected) citrus bu
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ullman, Diane, James Moyer, Benjamin Raccah, Abed Gera, Meir Klein, and Jacob Cohen. Tospoviruses Infecting Bulb Crops: Evolution, Diversity, Vector Specificity and Control. United States Department of Agriculture, September 2002. http://dx.doi.org/10.32747/2002.7695847.bard.

Texto completo da fonte
Resumo:
Objectives. The overall goal of the proposed research was to develop a mechanistic understanding of tospovirus evolution, diversity and vector specificity that could be applied to development of novel methods for limiting virus establishment and spread. Our specific objectives were: 1) To characterize newly intercepted tospoviruses in onion, Hippeastrum and other bulb crops and compare them with the known tomato spotted wilt virus (TSWV) and its isolates; 2) To characterize intra- and interspecific variation in the virus transmission by thrips of the new and distinct tospoviruses. and, 3) To d
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mawassi, Munir, Baozhong Meng, and Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7613887.bard.

Texto completo da fonte
Resumo:
Grapevine is perhaps the most widely grown fruit crop. To understand the genetic make-up so as to improve the yield and quality of grapes and grape products, researchers in Europe have recently sequenced the genomes of Pinot noir and its inbred. As expected, function of many grape genes is unknown. Functional genomics studies have become the major focus of grape researchers and breeders. Current genetic approaches for gene function studies include mutagenesis, crossing and genetic transformation. However, these approaches are difficult to apply to grapes and takes long periods of time to accom
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Dolja, Valerian V., Amit Gal-On, and Victor Gaba. Suppression of Potyvirus Infection by a Closterovirus Protein. United States Department of Agriculture, March 2002. http://dx.doi.org/10.32747/2002.7580682.bard.

Texto completo da fonte
Resumo:
The plant virus family Polyviridae is the largest and most destructive of all plant viruses. Despite the continuous effort to develop resistant plant varieties, there is a desperate need for novel approaches conferring wide-range potyvirus resistance. Based on experiments with the tobacco etch potyvirus (TEV)-derived gene expression vector, we suggested approach for screening of the candidate resistance genes. This approach relies on insertion of the genes into a virus vector and evaluation of the phenotypes of the resulting recombinant viruses. The genes which suppress infection by the recomb
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lapidot, Moshe, and Vitaly Citovsky. molecular mechanism for the Tomato yellow leaf curl virus resistance at the ty-5 locus. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604274.bard.

Texto completo da fonte
Resumo:
Tomato yellow leaf curl virus (TYLCV) is a major pathogen of tomato that causes extensive crop loss worldwide, including the US and Israel. Genetic resistance in the host plant is considered highly effective in the defense against viral infection in the field. Thus, the best way to reduce yield losses due to TYLCV is by breeding tomatoes resistant or tolerant to the virus. To date, only six major TYLCV-resistance loci, termed Ty-1 to Ty-6, have been characterized and mapped to the tomato genome. Among tomato TYLCV-resistant lines containing these loci, we have identified a major recessive quan
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!