Literatura científica selecionada sobre o tema "Rota-Baxter operator"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Rota-Baxter operator".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Rota-Baxter operator"
BAI, CHENGMING, LI GUO e XIANG NI. "RELATIVE ROTA–BAXTER OPERATORS AND TRIDENDRIFORM ALGEBRAS". Journal of Algebra and Its Applications 12, n.º 07 (16 de maio de 2013): 1350027. http://dx.doi.org/10.1142/s0219498813500278.
Texto completo da fonteWang, Zhongwei, Zhen Guan, Yi Zhang e Liangyun Zhang. "Rota–Baxter Operators on Cocommutative Weak Hopf Algebras". Mathematics 10, n.º 1 (28 de dezembro de 2021): 95. http://dx.doi.org/10.3390/math10010095.
Texto completo da fonteXu, Senrong, Wei Wang e Jia Zhao. "Twisted Rota-Baxter operators on Hom-Lie algebras". AIMS Mathematics 9, n.º 2 (2023): 2619–40. http://dx.doi.org/10.3934/math.2024129.
Texto completo da fonteZhao, Jia, e Yu Qiao. "Cohomology and Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras". Mathematics 12, n.º 1 (4 de janeiro de 2024): 166. http://dx.doi.org/10.3390/math12010166.
Texto completo da fonteGuo, Shuangjian, Shengxiang Wang e Xiaohui Zhang. "The Classical Hom–Leibniz Yang–Baxter Equation and Hom–Leibniz Bialgebras". Mathematics 10, n.º 11 (3 de junho de 2022): 1920. http://dx.doi.org/10.3390/math10111920.
Texto completo da fonteTang, Rong, Yunhe Sheng e Yanqiu Zhou. "Deformations of relative Rota–Baxter operators on Leibniz algebras". International Journal of Geometric Methods in Modern Physics 17, n.º 12 (4 de setembro de 2020): 2050174. http://dx.doi.org/10.1142/s0219887820501741.
Texto completo da fonteZhou, Shuyun, e Li Guo. "Rota-Baxter TD Algebra and Quinquedendriform Algebra". Algebra Colloquium 24, n.º 01 (15 de fevereiro de 2017): 53–74. http://dx.doi.org/10.1142/s1005386717000037.
Texto completo da fonteLiu, Ling, Abdenacer Makhlouf, Claudia Menini e Florin Panaite. "-Rota–Baxter Operators, Infinitesimal Hom-bialgebras and the Associative (Bi)Hom-Yang–Baxter Equation". Canadian Mathematical Bulletin 62, n.º 02 (7 de janeiro de 2019): 355–72. http://dx.doi.org/10.4153/cmb-2018-028-8.
Texto completo da fonteDas, Apurba, e Satyendra Kumar Mishra. "The L∞-deformations of associative Rota–Baxter algebras and homotopy Rota–Baxter operators". Journal of Mathematical Physics 63, n.º 5 (1 de maio de 2022): 051703. http://dx.doi.org/10.1063/5.0076566.
Texto completo da fonteRosenkranz, Markus, Xing Gao e Li Guo. "An algebraic study of multivariable integration and linear substitution". Journal of Algebra and Its Applications 18, n.º 11 (19 de agosto de 2019): 1950207. http://dx.doi.org/10.1142/s0219498819502074.
Texto completo da fonteTeses / dissertações sobre o assunto "Rota-Baxter operator"
Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan". Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.
Texto completo da fonteThe goal of this thesis is to explore relative Rota-Baxter operators in the context of ternary algebras of both Lie and Jordan types. We mainly consider Lie triple systems, 3-Lie algebras and ternary Jordan algebras. The study covers their structure, cohomology, deformations, and their connection with the Yang-Baxter equations. The work is divided into three main parts. The first part aims first to introduce and study a graded Lie algebra whose Maurer-Cartan elements are Lie triple systems. It turns out to be the controlling algebra of Lie triple systems deformations and fits with the adjoint cohomology theory of Lie triple systems introduced by Yamaguti. In addition, we introduce the notion of relative Rota-Baxter operators on Lie triple systems and construct a Lie 3-algebra as a special case of L∞-algebras, where the Maurer-Cartan elements correspond to relative Rota-Baxter operators. In the second part, we introduce the concept of twisted relative Rota-Baxter operators on 3-Lie algebras and construct an L∞-algebra, where the Maurer-Cartan elements are twisted relative Rota-Baxter operators. This allows us to define the Chevalley-Eilenberg cohomology of a twisted relative Rota-Baxter operator. In the last part, we deal with a representation theory of ternary Jordan algebras. In particular, we introduce and discuss the concept of coherent ternary Jordan algebras. We then define relative Rota-Baxter operators for ternary Jordan algebras and discuss solutions ofthe ternary Jordan Yang-Baxter equation involving relative Rota-Baxter operators. Moreover, we investigate ternary pre-Jordan algebras as the underlying algebraic structure of relative Rota-Baxter operators
Trabalhos de conferências sobre o assunto "Rota-Baxter operator"
Anghel, Cristian. "On a class of Rota-Baxter operators with geometric origin". In 10th Jubilee International Conference of the Balkan Physical Union. Author(s), 2019. http://dx.doi.org/10.1063/1.5091250.
Texto completo da fonte