Literatura científica selecionada sobre o tema "Rubisco"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Rubisco".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Rubisco"

1

Valente, Ana I., Ana M. Ferreira, Mafalda R. Almeida, Aminou Mohamadou, Mara G. Freire, and Ana P. M. Tavares. "Efficient Extraction of the RuBisCO Enzyme from Spinach Leaves Using Aqueous Solutions of Biocompatible Ionic Liquids." Sustainable Chemistry 3, no. 1 (2021): 1–18. http://dx.doi.org/10.3390/suschem3010001.

Texto completo da fonte
Resumo:
Ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) is the most abundant protein on the planet, being present in plants, algae and various species of bacteria, with application in the pharmaceutical, chemical, cosmetic and food industries. However, current extraction methods of RuBisCO do not allow high yields of extraction. Therefore, the development of an efficient and selective RuBisCOs’ extraction method is required. In this work, aqueous solutions of biocompatible ionic liquids (ILs), i.e., ILs derived from choline and analogues of glycine-betaine, were applied in the RuBisCO’s extra
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

McNevin, Dennis B., Murray R. Badger, Spencer M. Whitney, Susanne von Caemmerer, Guillaume G. B. Tcherkez, and Graham D. Farquhar. "Differences in Carbon Isotope Discrimination of Three Variants of D-Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Reflect Differences in Their Catalytic Mechanisms." Journal of Biological Chemistry 282, no. 49 (2007): 36068–76. http://dx.doi.org/10.1074/jbc.m706274200.

Texto completo da fonte
Resumo:
The carboxylation kinetic (stable carbon) isotope effect was measured for purified d-ribulose-1,5-bisphosphate carboxylases/oxygenases (Rubiscos) with aqueous CO2 as substrate by monitoring Rayleigh fractionation using membrane inlet mass spectrometry. This resulted in discriminations (Δ) of 27.4 ± 0.9‰ for wild-type tobacco Rubisco, 22.2 ± 2.1‰ for Rhodospirillum rubrum Rubisco, and 11.2 ± 1.6‰ for a large subunit mutant of tobacco Rubisco in which Leu335 is mutated to valine (L335V). These Δ values are consistent with the photosynthetic discrimination determined for wild-type tobacco and tra
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Whitney, Spencer M., and T. John Andrews. "The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae." Functional Plant Biology 25, no. 2 (1998): 131. http://dx.doi.org/10.1071/pp97131.

Texto completo da fonte
Resumo:
Some dinoflagellates have been shown recently to be unique among eukaryotes in having a ribulose-bisphosphate carboxylase-oxygenase (Rubisco, EC 4.1.1.39) composed of only one type of subunit, the 53-kDa large subunit [reviewed by Palmer, J.D. (1996) Plant Cell 8, 343–345]. Formerly, such homomeric Rubiscos had been found only in anaerobic bacteria and are characterised by such poor abilities to discriminate against the competitive alternate substrate, O2, that they would not be able to support net carbon gain if exposed to the current atmospheric CO2/O2 ratio. The capacity of Rubiscos from ae
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mueller-Cajar, Oliver, and Spencer M. Whitney. "Evolving improved Synechococcus Rubisco functional expression in Escherichia coli." Biochemical Journal 414, no. 2 (2008): 205–14. http://dx.doi.org/10.1042/bj20080668.

Texto completo da fonte
Resumo:
The photosynthetic CO2-fixing enzyme Rubisco [ribulose-P2 (D-ribulose-1,5-bisphosphate) carboxylase/oxygenase] has long been a target for engineering kinetic improvements. Towards this goal we used an RDE (Rubisco-dependent Escherichia coli) selection system to evolve Synechococcus PCC6301 Form I Rubisco under different selection pressures. In the fastest growing colonies, the Rubisco L (large) subunit substitutions I174V, Q212L, M262T, F345L or F345I were repeatedly selected and shown to increase functional Rubisco expression 4- to 7-fold in the RDE and 5- to 17-fold when expressed in XL1-Blu
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Iqbal, Wasim A., Isabel G. Miller, Rebecca L. Moore, Iain J. Hope, Daniel Cowan-Turner, and Maxim V. Kapralov. "Rubisco substitutions predicted to enhance crop performance through carbon uptake modelling." Journal of Experimental Botany 72, no. 17 (2021): 6066–75. http://dx.doi.org/10.1093/jxb/erab278.

Texto completo da fonte
Resumo:
Abstract Improving the performance of the CO2-fixing enzyme Rubisco is among the targets for increasing crop yields. Here, Earth system model (ESM) representations of canopy C3 and C4 photosynthesis were combined with species-specific Rubisco parameters to quantify the consequences of bioengineering foreign Rubiscos into C3 and C4 crops under field conditions. The ‘two big leaf’ (sunlit/shaded) model for canopy photosynthesis was used together with species-specific Rubisco kinetic parameters including maximum rate (Kcat), Michaelis–Menten constant for CO2 at ambient atmospheric O2 (Kc21%O2), s
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Utåker, Janne B., Kjell Andersen, Ågot Aakra, Birgitte Moen, and Ingolf F. Nes. "Phylogeny and Functional Expression of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase from the Autotrophic Ammonia-Oxidizing Bacterium Nitrosospira sp.Isolate 40KI." Journal of Bacteriology 184, no. 2 (2002): 468–78. http://dx.doi.org/10.1128/jb.184.2.468-478.2002.

Texto completo da fonte
Resumo:
ABSTRACT The autotrophic ammonia-oxidizing bacteria (AOB), which play an important role in the global nitrogen cycle, assimilate CO2 by using ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Here we describe the first detailed study of RubisCO (cbb) genes and proteins from the AOB. The cbbLS genes from Nitrosospira sp. isolate 40KI were cloned and sequenced. Partial sequences of the RubisCO large subunit (CbbL) from 13 other AOB belonging to the β and γ subgroups of the class Proteobacteria are also presented. All except one of the β-subgroup AOB possessed a red-like type I RubisCO w
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ng, Jediael, Zhijun Guo, and Oliver Mueller-Cajar. "Rubisco activase requires residues in the large subunit N terminus to remodel inhibited plant Rubisco." Journal of Biological Chemistry 295, no. 48 (2020): 16427–35. http://dx.doi.org/10.1074/jbc.ra120.015759.

Texto completo da fonte
Resumo:
The photosynthetic CO2 fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) forms dead-end inhibited complexes while binding multiple sugar phosphates, including its substrate ribulose 1,5-bisphosphate. Rubisco can be rescued from this inhibited form by molecular chaperones belonging to the ATPases associated with diverse cellular activities (AAA+ proteins) termed Rubisco activases (Rcas). The mechanism of green-type Rca found in higher plants has proved elusive, in part because until recently higher-plant Rubiscos could not be expressed recombinantly. Identifying the intera
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wang, Renée Z., Albert K. Liu, Douglas M. Banda, Woodward W. Fischer, and Patrick M. Shih. "A Bacterial Form I’ Rubisco Has a Smaller Carbon Isotope Fractionation than Its Form I Counterpart." Biomolecules 13, no. 4 (2023): 596. http://dx.doi.org/10.3390/biom13040596.

Texto completo da fonte
Resumo:
Form I rubiscos evolved in Cyanobacteria ≥ 2.5 billion years ago and are enzymatically unique due to the presence of small subunits (RbcS) capping both ends of an octameric large subunit (RbcL) rubisco assembly to form a hexadecameric (L8S8) holoenzyme. Although RbcS was previously thought to be integral to Form I rubisco stability, the recent discovery of a closely related sister clade of octameric rubiscos (Form I’; L8) demonstrates that the L8 complex can assemble without small subunits (Banda et al. 2020). Rubisco also displays a kinetic isotope effect (KIE) where the 3PG product is deplet
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Loganathan, Nitin, Yi-Chin Candace Tsai, and Oliver Mueller-Cajar. "Characterization of the heterooligomeric red-type rubisco activase from red algae." Proceedings of the National Academy of Sciences 113, no. 49 (2016): 14019–24. http://dx.doi.org/10.1073/pnas.1610758113.

Texto completo da fonte
Resumo:
The photosynthetic CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis–powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red plastid lineage contain so-called red-type rubiscos, some of which have been shown to possess superior kinetic properties to green-type rubiscos found in higher plants. These organisms are known to encod
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Tabita, F. Robert, Thomas E. Hanson, Huiying Li, Sriram Satagopan, Jaya Singh, and Sum Chan. "Function, Structure, and Evolution of the RubisCO-Like Proteins and Their RubisCO Homologs." Microbiology and Molecular Biology Reviews 71, no. 4 (2007): 576–99. http://dx.doi.org/10.1128/mmbr.00015-07.

Texto completo da fonte
Resumo:
SUMMARY About 30 years have now passed since it was discovered that microbes synthesize RubisCO molecules that differ from the typical plant paradigm. RubisCOs of forms I, II, and III catalyze CO2 fixation reactions, albeit for potentially different physiological purposes, while the RubisCO-like protein (RLP) (form IV RubisCO) has evolved, thus far at least, to catalyze reactions that are important for sulfur metabolism. RubisCO is the major global CO2 fixation catalyst, and RLP is a somewhat related protein, exemplified by the fact that some of the latter proteins, along with RubisCO, catalyz
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Rubisco"

1

Milward, Sara Eve. "Interrogating plant Rubisco-Rubisco activase interactions." Phd thesis, Canberra, ACT : The Australian National University, 2018. http://hdl.handle.net/1885/149565.

Texto completo da fonte
Resumo:
Atmospheric CO2 fixation is catalysed by the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite the critical role Rubisco plays in the biosphere, it is a slow catalyst that poorly discriminates between substrate CO2 and O2, and is often the rate-limiting step of photosynthesis. These deficiencies have made improving Rubisco function a major target in steps towards enhancing leaf photosynthesis rate and plant growth. In pursuing this goal, one strategy is to identify solutions for improving the kinetics of plant Rubis
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Keown, Jeremy Russell. "Rubisco's chiropractor: a study of higher plant Rubisco activase." Thesis, University of Canterbury. School of Biology, 2015. http://hdl.handle.net/10092/10398.

Texto completo da fonte
Resumo:
Rubisco activase operates as the chaperone responsible for maintaining the catalytic competency of Ribulose 1,5-bisphophate carboxylase oxygenase (Rubisco) in plants. Rubisco is notoriously inefficient, rapidly self-inactivating under physiological conditions. Rubisco activase uses the power released from the hydrolysis of ATP to power a conformational change in Rubisco, reactivating it. Rubisco activase has been previously shown to form a large range of species in solution; however, little has been done to relate the size of oligomeric species and physiological activity. In this thesis data i
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Saschenbrecker, Sandra. "Folding and assembly of RuBisCO." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-75775.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Girnus, Jan. "Regulation of Rubisco in CAM plants." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Singh, Jaya. "Functional Relationships Among Rubisco Family Members." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1220413240.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bošková, Martina. "Vliv stáří jehlic na obsah a aktivitu enzymu Rubisco u smrku ztepilého v podmínkách normální a zvýšené koncentrace CO2." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2009. http://www.nusl.cz/ntk/nusl-216513.

Texto completo da fonte
Resumo:
In this diploma work influence of needle age at Rubisco activity and content in Norway spruce (Picea abies) was studied. The plants were cultivated in conditions with ambient (A) CO2 concentration (350 µmol CO2/mol) and elevated (E) CO2 concentration (700 µmol CO2/mol). Sampling was done two times during the growing season (in the middle of June and in the end of September) were taken. Initial and total Rubisco activities were measured spectrophotometrically. Rubisco content was determined by SDS–PAGE method. Rubisco activity in 18-months-old needles was in E higher than in A. Rubisco contents
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Butt, Mohammed Salman. "Technologies and methods to characterise Rubisco function." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/39375.

Texto completo da fonte
Resumo:
Almost every carbon atom that our bodies are made of and clothed in, at one point or another saw the active site of the enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, one of the largest in nature at ~550 kDa, is also said to be the most abundant in nature, constituting up to 50% of soluble protein in land plants. It is however, notoriously inefficient at fixing carbon dioxide, due to its slow catalytic turnover, low affinity for atmospheric CO2, and its use of both CO2 and O2 as substrates for competing reactions. For this reason, Rubisco has also been one of t
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wietrzynski, Wojciech. "Rubisco biogenesis and assembly in Chlamydomonas reinhardtii." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066336/document.

Texto completo da fonte
Resumo:
La nécessité de coordonner l’expression des gènes provenant de génomes différents chez les plantes a conduit à l’émergence de mécanismes imposant un contrôle nucléaire sur l’expression génétique de l’organelle. Des signaux antérogrades, exercés par des protéines reconnaissant des séquences spécifiques, existent en parallèle avec un contrôle des synthèses chloroplastiques dépendant de l’assemblage (CES). Ensemble, ils coordonnent la formation stoichiométrique des complexes photosynthétiques.La Ribulose bisphosphate carboxylase/oxygénase (Rubisco) est une enzyme localisée dans le chloroplaste qu
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wietrzynski, Wojciech. "Rubisco biogenesis and assembly in Chlamydomonas reinhardtii." Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066336.pdf.

Texto completo da fonte
Resumo:
La nécessité de coordonner l’expression des gènes provenant de génomes différents chez les plantes a conduit à l’émergence de mécanismes imposant un contrôle nucléaire sur l’expression génétique de l’organelle. Des signaux antérogrades, exercés par des protéines reconnaissant des séquences spécifiques, existent en parallèle avec un contrôle des synthèses chloroplastiques dépendant de l’assemblage (CES). Ensemble, ils coordonnent la formation stoichiométrique des complexes photosynthétiques.La Ribulose bisphosphate carboxylase/oxygénase (Rubisco) est une enzyme localisée dans le chloroplaste qu
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Xie, Dong. "Uncovering the maturation pathway of plant Rubisco." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL080.

Texto completo da fonte
Resumo:
Lors de la photosynthèse, l’assimilation sous formes de glucides du dioxyde de carbone atmosphérique (CO₂), le principal gaz à effet de serre anthropique, est catalysée par l'enzyme Rubisco, la protéine la plus abondante sur terre. La grande sous-unité de la Rubisco (RbcL) subit une voie de maturation unique conduisant à des modifications N-terminales inhabituelles. Ce mécanisme conservé chez les plantes, résulte en une proline acétylée N-terminale en position 3. Décrypter la voie de maturation de Rubisco est donc une question clé pour la fixation du CO₂ dans le contexte des changements climat
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Rubisco"

1

Martin, Gillian Clare. The use of Rubisco in the study of orchid hybridization. Universityof Birmingham, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Galmés, Jeroni. La Rubisco, el punt d'inici de la vida: Significat ecològic i una possible clau per a la millora genètica de la productivitat vegetal. Hiperdimensional, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Garamvölgyi, László. Rubicon. BTR Kft., 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kopf, Gail. Rubicon. T. Nelson Publishers, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

John, Hooker. Rubicon. Penguin Books, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Erickson, Steve. Rubicon Beach. Vintage Books, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Camp, Jeffery. Jeffrey Camp: Rubicon. Art Space Gallery, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zacharias, Jan. Anderkant die Rubicon. Oranjewerkers Promosies, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

(Gallery), Sperone Westwater, ed. Alexis Rockman: "Rubicon". Sperone Westwater, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

1957-, Rubiño Ignacio, Rubiño Luis 1959-, and García Pura 1959-, eds. Ignacio Rubiño, Luis Rubiño, Pura García: Works, 1989/1997. T6 Ediciones, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Rubisco"

1

Peretó, Juli. "Rubisco." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1395.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Liu, Cuimin, Kaiyao Huang, and Jianrong Xia. "Rubisco." In Research Methods of Environmental Physiology in Aquatic Sciences. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5354-7_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Peretó, Juli. "Rubisco." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1395.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Peretó, Juli. "Rubisco." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1395.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Peretó, Juli. "Rubisco." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1395-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Andrews, T. John, Susanne von Caemmerer, Colleen J. Mate, Graham S. Hudson, and John R. Evans. "The Regulation of Rubisco Catalysis by Rubisco Activase." In Photosynthesis: from Light to Biosphere. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_920.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Portis, Archie R., Brian Esau, Eric M. Larson, et al. "Characteristics of the Interaction between Rubisco and Rubisco Activase." In Photosynthesis: from Light to Biosphere. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_924.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Haslam, Richard P., Alfred J. Keys, P. John Andralojc, et al. "Specificity of diatom Rubisco." In Plant Responses to Air Pollution and Global Change. Springer Japan, 2005. http://dx.doi.org/10.1007/4-431-31014-2_18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Andrews, T. John, Murray R. Badger, Daryl L. Edmondson, Heather J. Kane, Matthew K. Morell, and Kalanethee Paul. "Rubisco: Subunits and Mechanism." In Current Research in Photosynthesis. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_511.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wu, Xiang-yu, Wei Gu, and Guang-yao Wu. "Rubisco from Amaranthus Hypochondriacus." In Current Research in Photosynthesis. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_512.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Rubisco"

1

Pimentel Marte, Omar, and Sariah Fischer. "The Space Rubicon: The Catch-22 For Governments in Protecting Commercial Space Assets." In 22nd IAA Symposium on Security, Stability and Sustainability of Space Activities, Held at the 75th International Astronautical Congress (IAC 2024). International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078386-0019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zhou, Hualu, Giang Vu, and David J. McClements. "Rubisco Proteins as Plant-based Alternatives to Egg White Proteins: Characterization of Thermal Gelation Properties." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/vamx3998.

Texto completo da fonte
Resumo:
RuBisCO proteins can be isolated from abundant and sustainable plant sources, such as duckweed (e.g., Lemnoideae). These plant-based globular proteins are capable of irreversibly unfolding and forming gels when heated, which means they may be able to mimic some of the functional attributes exhibited by animal globular proteins. In this study, we examined the ability of RuBisCo proteins to mimic the initial rheology and thermal gelation properties of egg white, which the aim of developing plant-based egg analogs. The impact of protein concentration (10-15% w/w), pH (7 to 9), and calcium concent
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Callaghan, Jake. "NOVEL ARCHAEAL LINEAGES UTILIZING RUBISCO IN LAKE SUPERIOR SEDIMENTS." In 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-348067.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Gao, Lan. "Structure of a Novel Rubisco Activase in Gardenia jasminoides." In 2018 2nd International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2018). Atlantis Press, 2018. http://dx.doi.org/10.2991/aeecs-18.2018.8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kacar, Betul, Zachary R. Adam, Victor Hanson-Smith, and Nicholas Boekelheide. "CONSTRAINING THE GREAT OXIDATION EVENT WITHIN THE RUBISCO PHYLOGENETIC TREE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-287360.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Holden, Todd, S. Dehipawala, E. Cheung, et al. "Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes." In SPIE Optical Engineering + Applications, edited by Richard B. Hoover, Paul C. W. Davies, Gilbert V. Levin, and Alexei Y. Rozanov. SPIE, 2011. http://dx.doi.org/10.1117/12.893434.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Babani, Salma I., Chukwuma C. Ogbaga, Dominic Okolo, and George Mangse. "Bioactive Compound and Rubisco Analyses of Leaf and Seed Extracts of Sesamum indicum." In 2019 15th International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2019. http://dx.doi.org/10.1109/icecco48375.2019.9043249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Yesiltas, Betül, Pedro J. García-Moreno, Egon B. Hansen, et al. "Antioxidant Activity of Peptides Embedded in Potato, Seaweed, Rubisco and Single Cell Proteins." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Mijalković, Jelena, Neda Pavlović, Marija Korićanac, Ivana Gazikalović, Nevena Luković, and Zorica Knežević-Jugović. "NANOSTRUCTURED PUMPKIN LEAF PROTEINS: FABRICATION AND ASSEMBLY FOR HYDROXOCOBALAMIN ENCAPSULATION." In 3rd International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy in Čačak, 2025. https://doi.org/10.46793/sbt30.60jm.

Texto completo da fonte
Resumo:
This research provides constructive information on the correlation between the nanoparticulation process and the properties of protein-based nanoparticles, achieving a precise control of particle size, uniformity, surface charge, and hydroxocobalamin encapsulation possibilities. RuBisCO-rich protein fraction was isolated from pumpkin leaves and was proved to serve as a matrix for the gelation-, pH-, and desolvation-driven assembled nanoparticles. Hydroxocobalamin, as a model of nutrient, was encapsulated successfully into the nanoparticles derived via cold gelation (54%) and antisolvent precip
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Subramani, Boopathi, and Kuo-Yuan Hwa. "In silico Analysis for Enhancing the Rubisco Activity among the C3 Plants of Poaceae Family." In 2010 2nd International Conference on Information Technology Convergence and Services (ITCS). IEEE, 2010. http://dx.doi.org/10.1109/itcs.2010.5581267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Rubisco"

1

Salvucci, Michael. Consequences of altering rubisco regulation. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1164812.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Spreitzer, Robert Joseph. Role of the Rubisco Small Subunit. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1330984.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Zielinski, R. (Structure and expression of nuclear genes encoding rubisco activase). Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6993018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mao, Jiafu, Forrest Hoffman, and Yaoping Wang. RUBISCO Soil Moisture Working Group (SMWG) Mini-Workshop Report. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2477285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hartman, F. C. Rubisco Mechanism: Dissection of the Enolization Partial Reaction. Final Report. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/824531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Zielinski, R. E. Structure and expression of nuclear genes encoding rubisco activase. Final technical report. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10154999.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Spreitzer, Robert J. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/809467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Chiu, Po-Lin. The regulation of carbon fixation in plant and green algae: Rubisco activase and the origin of heat inactivation of CO2 assimilation. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2475380.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Azem, Abdussalam, George Lorimer, and Adina Breiman. Molecular and in vivo Functions of the Chloroplast Chaperonins. United States Department of Agriculture, 2011. http://dx.doi.org/10.32747/2011.7697111.bard.

Texto completo da fonte
Resumo:
We present here the final report for our research project entitled "The molecular and in vivo functions of the chloroplast chaperonins”. Over the past few decades, intensive investigation of the bacterial GroELS system has led to a basic understanding of how chaperonins refold denatured proteins. However, the parallel is limited in its relevance to plant chaperonins, since the plant system differs from GroEL in genetic complexity, physiological roles of the chaperonins and precise molecular structure. Due to the importance of plant chaperonins for chloroplast biogenesis and Rubisco assembly, r
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Miller, John. Japan Crosses the Rubicon? Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada417346.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!