Artigos de revistas sobre o tema "S1P receptor antagonists"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "S1P receptor antagonists".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sumida, Grant M., e W. Daniel Stamer. "S1P2 receptor regulation of sphingosine-1-phosphate effects on conventional outflow physiology". American Journal of Physiology-Cell Physiology 300, n.º 5 (maio de 2011): C1164—C1171. http://dx.doi.org/10.1152/ajpcell.00437.2010.
Texto completo da fonteLukas, Susan, Lori Patnaude, Sokol Haxhinasto, Anthony Slavin, Melissa Hill-Drzewi, Josh Horan e Louise Kelly Modis. "No Differences Observed among Multiple Clinical S1P1 Receptor Agonists (Functional Antagonists) in S1P1 Receptor Down-regulation and Degradation". Journal of Biomolecular Screening 19, n.º 3 (3 de setembro de 2013): 407–16. http://dx.doi.org/10.1177/1087057113502234.
Texto completo da fonteZhang, Dong Dong, Bona Linke, Jing Suo, Aleksandra Zivkovic, Yannick Schreiber, Nerea Ferreirós, Marina Henke, Gerd Geisslinger, Holger Stark e Klaus Scholich. "Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors". Biological Chemistry 396, n.º 6-7 (1 de junho de 2015): 783–94. http://dx.doi.org/10.1515/hsz-2014-0276.
Texto completo da fonteHafizi, Redona, Faik Imeri, Roland H. Wenger e Andrea Huwiler. "S1P Stimulates Erythropoietin Production in Mouse Renal Interstitial Fibroblasts by S1P1 and S1P3 Receptor Activation and HIF-2α Stabilization". International Journal of Molecular Sciences 22, n.º 17 (31 de agosto de 2021): 9467. http://dx.doi.org/10.3390/ijms22179467.
Texto completo da fonteWerth, Stephan, Helge Müller-Fielitz e Walter Raasch. "Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism". Journal of Endocrinology 235, n.º 3 (dezembro de 2017): 251–65. http://dx.doi.org/10.1530/joe-16-0550.
Texto completo da fonteZhang, Gengqian, Sulei Xu, Yan Qian e Pingnian He. "Sphingosine-1-phosphate prevents permeability increases via activation of endothelial sphingosine-1-phosphate receptor 1 in rat venules". American Journal of Physiology-Heart and Circulatory Physiology 299, n.º 5 (novembro de 2010): H1494—H1504. http://dx.doi.org/10.1152/ajpheart.00462.2010.
Texto completo da fonteCorvino, Angela, Ida Cerqua, Alessandra Lo Bianco, Giuseppe Caliendo, Ferdinando Fiorino, Francesco Frecentese, Elisa Magli et al. "Antagonizing S1P3 Receptor with Cell-Penetrating Pepducins in Skeletal Muscle Fibrosis". International Journal of Molecular Sciences 22, n.º 16 (17 de agosto de 2021): 8861. http://dx.doi.org/10.3390/ijms22168861.
Texto completo da fonteToebbe, JT, e Mary Beth Genter. "An Update on Sphingosine-1-Phosphate and Lysophosphatidic Acid Receptor Transcripts in Rodent Olfactory Mucosa". International Journal of Molecular Sciences 23, n.º 8 (14 de abril de 2022): 4343. http://dx.doi.org/10.3390/ijms23084343.
Texto completo da fonteGodessart, Nuria, Sanam Mustafa, Vlad Dolgachev, Mariona Aulí, Núria Aguilar, Judit Cabedo, Marta Calbet et al. "The S1P1 receptor antagonist W146 induces lymphopenia in mice. Demonstration that functional antagonism of S1P1 is the mechanism of lymphopenia evoked by fingolimod-like compounds. (140.15)". Journal of Immunology 184, n.º 1_Supplement (1 de abril de 2010): 140.15. http://dx.doi.org/10.4049/jimmunol.184.supp.140.15.
Texto completo da fonteJuarez, Julius G., Nadia Harun, Marilyn Thien, Robert Welschinger, Rana Baraz, Aileen Dela Pena, Stuart M. Pitson et al. "Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice". Blood 119, n.º 3 (19 de janeiro de 2012): 707–16. http://dx.doi.org/10.1182/blood-2011-04-348904.
Texto completo da fonteSeitz, Gabriele, Sedat Yildirim, Andreas M. Boehmler, Lothar Kanz e Robert Möhle. "Sphingosine 1-Phosphate (S1P) Induces Migration and ERK/MAP-Kinase-Dependent Proliferation in Chronic Lymphocytic Leukemia (B-CLL) Due to Expression of the G Protein-Coupled Receptors S1P1/4." Blood 106, n.º 11 (16 de novembro de 2005): 4996. http://dx.doi.org/10.1182/blood.v106.11.4996.4996.
Texto completo da fonteKitada, Yoshihiko, Kazuo Kajita, Koichiro Taguchi, Ichiro Mori, Masahiro Yamauchi, Takahide Ikeda, Mikako Kawashima et al. "Blockade of Sphingosine 1-Phosphate Receptor 2 Signaling Attenuates High-Fat Diet-Induced Adipocyte Hypertrophy and Systemic Glucose Intolerance in Mice". Endocrinology 157, n.º 5 (4 de março de 2016): 1839–51. http://dx.doi.org/10.1210/en.2015-1768.
Texto completo da fonteGandy, K. Alexa Orr, Daniel Canals, Mohamad Adada, Masayuki Wada, Patrick Roddy, Ashley J. Snider, Yusuf A. Hannun e Lina M. Obeid. "Sphingosine 1-phosphate induces filopodia formation through S1PR2 activation of ERM proteins". Biochemical Journal 449, n.º 3 (9 de janeiro de 2013): 661–72. http://dx.doi.org/10.1042/bj20120213.
Texto completo da fonteZhu, Qing, Min Xia, Zhengchao Wang, Pin-Lan Li e Ningjun Li. "A novel lipid natriuretic factor in the renal medulla: sphingosine-1-phosphate". American Journal of Physiology-Renal Physiology 301, n.º 1 (julho de 2011): F35—F41. http://dx.doi.org/10.1152/ajprenal.00014.2011.
Texto completo da fonteChumanevich, Alena, Piper Wedman e Carole A. Oskeritzian. "Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2". Mediators of Inflammation 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/1503206.
Texto completo da fonteBalthasar, Sonja, Johanna Samulin, Hanna Ahlgren, Nina Bergelin, Mathias Lundqvist, Emil C. Toescu, Margaret C. Eggo e Kid Törnquist. "Sphingosine 1-phosphate receptor expression profile and regulation of migration in human thyroid cancer cells". Biochemical Journal 398, n.º 3 (29 de agosto de 2006): 547–56. http://dx.doi.org/10.1042/bj20060299.
Texto completo da fonteNiedernberg, Anke, Sorin Tunaru, Andree Blaukat, Bruce Harris e Evi Kostenis. "Comparative Analysis of Functional Assays for Characterization of Agonist Ligands at G Protein-Coupled Receptors". Journal of Biomolecular Screening 8, n.º 5 (outubro de 2003): 500–510. http://dx.doi.org/10.1177/1087057103257555.
Texto completo da fonteStandoli, Sara, Sara Pecchioli, Daniel Tortolani, Camilla Di Meo, Federico Fanti, Manuel Sergi, Marina Bacci et al. "The TRPV1 Receptor Is Up-Regulated by Sphingosine 1-Phosphate and Is Implicated in the Anandamide-Dependent Regulation of Mitochondrial Activity in C2C12 Myoblasts". International Journal of Molecular Sciences 23, n.º 19 (21 de setembro de 2022): 11103. http://dx.doi.org/10.3390/ijms231911103.
Texto completo da fonteDel Gaudio, Ilaria, Sebastian Hendrix, Christina Christoffersen e Christian Wadsack. "Neonatal HDL Counteracts Placental Vascular Inflammation via S1P–S1PR1 Axis". International Journal of Molecular Sciences 21, n.º 3 (25 de janeiro de 2020): 789. http://dx.doi.org/10.3390/ijms21030789.
Texto completo da fonteChen, Zhoumou, Timothy M. Doyle, Livio Luongo, Tally M. Largent-Milnes, Luigino Antonio Giancotti, Grant Kolar, Silvia Squillace et al. "Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain". Proceedings of the National Academy of Sciences 116, n.º 21 (8 de maio de 2019): 10557–62. http://dx.doi.org/10.1073/pnas.1820466116.
Texto completo da fonteTao, Rong, Holly E. Hoover, Norman Honbo, Mikaila Kalinowski, Conrad C. Alano, Joel S. Karliner e Robert Raffai. "High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate". American Journal of Physiology-Heart and Circulatory Physiology 298, n.º 3 (março de 2010): H1022—H1028. http://dx.doi.org/10.1152/ajpheart.00902.2009.
Texto completo da fonteLatif, Ahmed Abdel, Anush K. Karapetyan, Yuri Klyachkin, Manjula Sunkara, Susan Smyth, Mariusz Z. Ratajczak e Andrew J. Morris. "Novel Role for Bioactive Lipids in Mobilization of Bone Marrow Stem Cells During Myocardial Ischemia: Sphingosine-1 Phosphate (S1P) As Potential Therapeutic Target". Blood 120, n.º 21 (16 de novembro de 2012): 1911. http://dx.doi.org/10.1182/blood.v120.21.1911.1911.
Texto completo da fonteSchira-Heinen, Jessica, Luzhou Wang, Seda Akgün, Sofia Blum, Brigida Ziegler, André Heinen, Hans-Peter Hartung e Patrick Küry. "Modulation of Specific Sphingosine-1-Phosphate Receptors Augments a Repair Mediating Schwann Cell Phenotype". International Journal of Molecular Sciences 23, n.º 18 (7 de setembro de 2022): 10311. http://dx.doi.org/10.3390/ijms231810311.
Texto completo da fonteStockstill, Katherine, Timothy M. Doyle, Xisheng Yan, Zhoumou Chen, Kali Janes, Joshua W. Little, Kathryn Braden et al. "Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain". Journal of Experimental Medicine 215, n.º 5 (27 de abril de 2018): 1301–13. http://dx.doi.org/10.1084/jem.20170584.
Texto completo da fonteLandeen, Lee K., Dorothy A. Dederko, Colleen S. Kondo, Betty S. Hu, Nakon Aroonsakool, Jason H. Haga e Wayne R. Giles. "Mechanisms of the negative inotropic effects of sphingosine-1-phosphate on adult mouse ventricular myocytes". American Journal of Physiology-Heart and Circulatory Physiology 294, n.º 2 (fevereiro de 2008): H736—H749. http://dx.doi.org/10.1152/ajpheart.00316.2007.
Texto completo da fonteStepanovska Tanturovska, Bisera, Aleksandra Zivkovic, Faik Imeri, Thomas Homann, Burkhard Kleuser, Holger Stark e Andrea Huwiler. "ST-2191, an Anellated Bismorpholino Derivative of Oxy-Fingolimod, Shows Selective S1P1 Agonist and Functional Antagonist Potency In Vitro and In Vivo". Molecules 26, n.º 17 (24 de agosto de 2021): 5134. http://dx.doi.org/10.3390/molecules26175134.
Texto completo da fonteHla, Timothy, Sylvain Galvani, Shahin Rafii e Ralph Nachman. "S1P and the birth of platelets". Journal of Experimental Medicine 209, n.º 12 (19 de novembro de 2012): 2137–40. http://dx.doi.org/10.1084/jem.20122284.
Texto completo da fonteMaceyka, Michael, Sergio E. Alvarez, Sheldon Milstien e Sarah Spiegel. "Filamin A Links Sphingosine Kinase 1 and Sphingosine-1-Phosphate Receptor 1 at Lamellipodia To Orchestrate Cell Migration". Molecular and Cellular Biology 28, n.º 18 (21 de julho de 2008): 5687–97. http://dx.doi.org/10.1128/mcb.00465-08.
Texto completo da fonteLuo, Dongdong, Zhikun Guo, Xuecui Zhao, Lijuan Wu, Xiaochun Liu, Yingzhi Zhang, Yuhang Zhang et al. "Novel 5-fluorouracil sensitizers for colorectal cancer therapy: Design and synthesis of S1P receptor 2 (S1PR2) antagonists". European Journal of Medicinal Chemistry 227 (janeiro de 2022): 113923. http://dx.doi.org/10.1016/j.ejmech.2021.113923.
Texto completo da fonteLee, Chi-Ho, e Ji Woong Choi. "S1P/S1P2 Signaling Axis Regulates Both NLRP3 Upregulation and NLRP3 Inflammasome Activation in Macrophages Primed with Lipopolysaccharide". Antioxidants 10, n.º 11 (27 de outubro de 2021): 1706. http://dx.doi.org/10.3390/antiox10111706.
Texto completo da fonteLee, Jen-Fu, Sharon Gordon, Rosendo Estrada, Lichun Wang, Deanna L. Siow, Binks W. Wattenberg, David Lominadze e Menq-Jer Lee. "Balance of S1P1and S1P2signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature". American Journal of Physiology-Heart and Circulatory Physiology 296, n.º 1 (janeiro de 2009): H33—H42. http://dx.doi.org/10.1152/ajpheart.00097.2008.
Texto completo da fonteYoon, Chang Min, Bok Sil Hong, Hyung Geun Moon, Seyoung Lim, Pann-Ghill Suh, Yoon-Keun Kim, Chi-Bom Chae e Yong Song Gho. "Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways". Blood 112, n.º 4 (15 de agosto de 2008): 1129–38. http://dx.doi.org/10.1182/blood-2007-11-125203.
Texto completo da fonteZhang, Yujin, Shushan Zhao, Hongyu Wu, Xia Hu, Renna Luo, Nicholas Parchim, Rodney E. Kellems e Yang Xia. "Sphingosine 1-Phosphate (S1P)/S1P Receptor 1 Pathway Has an Essential Role for Sickle Cell Disease". Blood 124, n.º 21 (6 de dezembro de 2014): 4063. http://dx.doi.org/10.1182/blood.v124.21.4063.4063.
Texto completo da fonteKoch, Alexander, Manuel Jäger, Anja Völzke, Georgios Grammatikos, Dagmar Meyer zu Heringdorf, Andrea Huwiler e Josef Pfeilschifter. "Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration". Biological Chemistry 396, n.º 6-7 (1 de junho de 2015): 803–12. http://dx.doi.org/10.1515/hsz-2014-0288.
Texto completo da fonteEl-Shewy, Hesham M., Mimi Sohn, Parker Wilson, Mi Hye Lee, Samar M. Hammad, Louis M. Luttrell e Ayad A. Jaffa. "Low-Density Lipoprotein Induced Expression of Connective Tissue Growth Factor via Transactivation of Sphingosine 1-Phosphate Receptors in Mesangial Cells". Molecular Endocrinology 26, n.º 5 (1 de maio de 2012): 833–45. http://dx.doi.org/10.1210/me.2011-1261.
Texto completo da fonteDamirin, Alatangaole, Hideaki Tomura, Mayumi Komachi, Jin-Peng Liu, Chihiro Mogi, Masayuki Tobo, Ju-Qiang Wang et al. "Role of lipoprotein-associated lysophospholipids in migratory activity of coronary artery smooth muscle cells". American Journal of Physiology-Heart and Circulatory Physiology 292, n.º 5 (maio de 2007): H2513—H2522. http://dx.doi.org/10.1152/ajpheart.00865.2006.
Texto completo da fonte&NA;. "INTERNALIZATION OF THE S1P-1 RECEPTOR IS MEDIATED BY AGONISTS AND NOT BY ANTAGONISTS BUT DOES NOT REQUIRE INTRACELLULAR SIGNALING." Transplantation 82, Suppl 2 (julho de 2006): 426–27. http://dx.doi.org/10.1097/00007890-200607152-01067.
Texto completo da fontePelz, Andreas, Hanne Schaffert, Radharani Diallo, Falk Hiepe, Andreas Meisel e Siegfried Kohler. "S1P receptor antagonists fingolimod and siponimod do not improve the outcome of experimental autoimmune myasthenia gravis mice after disease onset". European Journal of Immunology 48, n.º 3 (19 de dezembro de 2017): 498–508. http://dx.doi.org/10.1002/eji.201747187.
Texto completo da fonteGerminario, Elena, Samantha Peron, Luana Toniolo, Romeo Betto, Francesca Cencetti, Chiara Donati, Paola Bruni e Daniela Danieli-Betto. "S1P2 receptor promotes mouse skeletal muscle regeneration". Journal of Applied Physiology 113, n.º 5 (1 de setembro de 2012): 707–13. http://dx.doi.org/10.1152/japplphysiol.00300.2012.
Texto completo da fonteIgawa, Satomi, Jae Eun Choi, Zhenping Wang, Yu-Ling Chang, Chia-Chi Wu, Tyler Werbel, Akemi Ishida-Yamamoto e Anna Di Nardo. "Sphingosine 1-phosphate is a harbinger of S. aureus invasion and activates host defense in epithelial barriers". Journal of Immunology 202, n.º 1_Supplement (1 de maio de 2019): 126.30. http://dx.doi.org/10.4049/jimmunol.202.supp.126.30.
Texto completo da fonteCohan, Stanley, Elisabeth Lucassen, Kyle Smoot, Justine Brink e Chiayi Chen. "Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article". Biomedicines 8, n.º 7 (18 de julho de 2020): 227. http://dx.doi.org/10.3390/biomedicines8070227.
Texto completo da fonteWhetzel, Angela M., David T. Bolick e Catherine C. Hedrick. "Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2 action in endothelium through induction of MAP kinase phosphatase-3". American Journal of Physiology-Cell Physiology 296, n.º 2 (fevereiro de 2009): C339—C345. http://dx.doi.org/10.1152/ajpcell.00293.2008.
Texto completo da fonteSchwalm, Stephanie, Tankica Maneva Timcheva, Iuliia Filipenko, Mahsa Ebadi, Lotte P. Hofmann, Uwe Zangemeister-Wittke, Josef Pfeilschifter e Andrea Huwiler. "Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts". Biological Chemistry 396, n.º 6-7 (1 de junho de 2015): 813–25. http://dx.doi.org/10.1515/hsz-2014-0289.
Texto completo da fonteKalhori, Veronica, Melissa Magnusson, Muhammad Yasir Asghar, Ilari Pulli e Kid Törnquist. "FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion". Endocrine-Related Cancer 23, n.º 5 (maio de 2016): 457–68. http://dx.doi.org/10.1530/erc-16-0050.
Texto completo da fontePergolizzi, Jr., Joseph V., e Jo Ann LeQuang. "Sigma Antagonists for Treatment of Neuropathic Pain Syndromes in Cancer Patients: A Narrative Review". Journal of Cancer Research Updates 11 (27 de outubro de 2022): 70–77. http://dx.doi.org/10.30683/1929-2279.2022.11.10.
Texto completo da fonteCurry, F. E., J. F. Clark e R. H. Adamson. "Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels". American Journal of Physiology-Heart and Circulatory Physiology 303, n.º 7 (1 de outubro de 2012): H825—H834. http://dx.doi.org/10.1152/ajpheart.00181.2012.
Texto completo da fonteOskeritzian, Carole A., Megan M. Price, Nitai C. Hait, Dmitri Kapitonov, Yves T. Falanga, Johanna K. Morales, John J. Ryan, Sheldon Milstien e Sarah Spiegel. "Essential roles of sphingosine-1–phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema". Journal of Experimental Medicine 207, n.º 3 (1 de março de 2010): 465–74. http://dx.doi.org/10.1084/jem.20091513.
Texto completo da fontedela Paz, Nathaniel G., Benoît Melchior e John A. Frangos. "Shear stress induces Gαq/11 activation independently of G protein-coupled receptor activation in endothelial cells". American Journal of Physiology-Cell Physiology 312, n.º 4 (1 de abril de 2017): C428—C437. http://dx.doi.org/10.1152/ajpcell.00148.2016.
Texto completo da fonteBandhuvula, Padmavathi, Norman Honbo, Guan-Ying Wang, Zhu-Qiu Jin, Henrik Fyrst, Meng Zhang, Alexander D. Borowsky, Lisa Dillard, Joel S. Karliner e Julie D. Saba. "S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart". American Journal of Physiology-Heart and Circulatory Physiology 300, n.º 5 (maio de 2011): H1753—H1761. http://dx.doi.org/10.1152/ajpheart.00946.2010.
Texto completo da fonteShah, Mithun Vinod, Ranran Zhang, Rosalyn Irby, Ravi Kothapalli, Xin Liu, Ty Arrington, Bryan Frank, Norman H. Lee e Thomas P. Loughran. "Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes". Blood 112, n.º 3 (1 de agosto de 2008): 770–81. http://dx.doi.org/10.1182/blood-2007-11-121871.
Texto completo da fonte