Literatura científica selecionada sobre o tema "Security of machine learning classifiers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Security of machine learning classifiers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Security of machine learning classifiers"
Atnafu, Surafel Mehari, e Prof (Dr ). Anuja Kumar Acharya. "Comparative Analysis of Intrusion Detection Attack Based on Machine Learning Classifiers". Indian Journal of Artificial Intelligence and Neural Networking 1, n.º 2 (10 de abril de 2021): 22–28. http://dx.doi.org/10.35940/ijainn.b1025.041221.
Texto completo da fonteAtnafu, Surafel Mehari, e Prof (Dr ). Anuja Kumar Acharya. "Comparative Analysis of Intrusion Detection Attack Based on Machine Learning Classifiers". Indian Journal of Artificial Intelligence and Neural Networking 1, n.º 2 (10 de abril de 2021): 22–28. http://dx.doi.org/10.54105/ijainn.b1025.041221.
Texto completo da fonteALGorain, Fahad T., e John A. Clark. "Covering Arrays ML HPO for Static Malware Detection". Eng 4, n.º 1 (9 de fevereiro de 2023): 543–54. http://dx.doi.org/10.3390/eng4010032.
Texto completo da fonteKatzir, Ziv, e Yuval Elovici. "Quantifying the resilience of machine learning classifiers used for cyber security". Expert Systems with Applications 92 (fevereiro de 2018): 419–29. http://dx.doi.org/10.1016/j.eswa.2017.09.053.
Texto completo da fonteGongada, Sandhya Rani, Muktevi Chakravarthy e Bhukya Mangu. "Power system contingency classification using machine learning technique". Bulletin of Electrical Engineering and Informatics 11, n.º 6 (1 de dezembro de 2022): 3091–98. http://dx.doi.org/10.11591/eei.v11i6.4031.
Texto completo da fonteMehanović, Dželila, e Jasmin Kevrić. "Phishing Website Detection Using Machine Learning Classifiers Optimized by Feature Selection". Traitement du Signal 37, n.º 4 (10 de outubro de 2020): 563–69. http://dx.doi.org/10.18280/ts.370403.
Texto completo da fonteDeshmukh, Miss Maithili, e Dr M. A. Pund. "Implementation Paper on Network Data Verification Using Machine Learning Classifiers Based on Reduced Feature Dimensions". International Journal for Research in Applied Science and Engineering Technology 10, n.º 4 (30 de abril de 2022): 2921–24. http://dx.doi.org/10.22214/ijraset.2022.41938.
Texto completo da fonteRunwal, Akshat. "Anomaly based Intrusion Detection System using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de setembro de 2021): 255–60. http://dx.doi.org/10.22214/ijraset.2021.37955.
Texto completo da fonteAbdulrezzak, Sarah, e Firas Sabir. "An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers". Journal of Engineering 29, n.º 2 (1 de fevereiro de 2023): 164–78. http://dx.doi.org/10.31026/j.eng.2023.02.11.
Texto completo da fonteSingh, Ravi, e Virender Ranga. "Performance Evaluation of Machine Learning Classifiers on Internet of Things Security Dataset". International Journal of Control and Automation 11, n.º 5 (31 de maio de 2018): 11–24. http://dx.doi.org/10.14257/ijca.2018.11.5.02.
Texto completo da fonteTeses / dissertações sobre o assunto "Security of machine learning classifiers"
Lubenko, Ivans. "Towards robust steganalysis : binary classifiers and large, heterogeneous data". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:c1ae44b8-94da-438d-b318-f038ad6aac57.
Texto completo da fonteNowroozi, Ehsan. "Machine Learning Techniques for Image Forensics in Adversarial Setting". Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1096177.
Texto completo da fonteSingh, Gurpreet. "Statistical Modeling of Dynamic Risk in Security Systems". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273599.
Texto completo da fonteBig data har använts regelbundet inom ekonomi för att bygga prognosmodeller, det är dock ett relativt nytt koncept inom säkerhetsbranschen. Denna studie förutsäger vilka larmkoder som kommer att låta under de kommande 7 dagarna på plats $L$ genom att observera de senaste 7 dagarna. Logistisk regression och neurala nätverk används för att lösa detta problem. Eftersom att problemet är av en multi-label natur tillämpas logistisk regression i kombination med binary relevance och classifier chains. Modellerna tränas på data som har annoterats med två separata metoder. Den första metoden annoterar datan genom att endast observera plats $L$ och den andra metoden betraktar $L$ och $L$:s omgivning. Eftersom problemet är multi-labeled kommer annoteringen sannolikt att vara obalanserad och därför används resamplings metoden, SMOTE, och random over-sampling för att öka frekvensen av minority labels. Recall, precision och F1-score mättes för att utvärdera modellerna. Resultaten visar att den andra annoterings metoden presterade bättre för alla modeller och att classifier chains och binary relevance presterade likartat. Binary relevance och classifier chains modellerna som tränades på datan som använts sig av resamplings metoden SMOTE gav ett högre macro average F1-score, dock sjönk prestationen för neurala nätverk. Resamplings metoden SMOTE presterade även bättre än random over-sampling. Neurala nätverksmodellen överträffade de andra två modellerna på alla metoder och uppnådde högsta F1-score.
Sayin, Günel Burcu. "Towards Reliable Hybrid Human-Machine Classifiers". Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/349843.
Texto completo da fonteMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Texto completo da fonteDang, Robin, e Anders Nilsson. "Evaluation of Machine Learning classifiers for Breast Cancer Classification". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280349.
Texto completo da fonteBröstcancer är en vanlig och dödlig sjukdom bland kvinnor globalt där en tidig upptäckt är avgörande för att förbättra prognosen för patienter. I dagens digitala samhälle kan datorer och komplexa algoritmer utvärdera och diagnostisera sjukdomar mer effektivt och med större säkerhet än erfarna läkare. Flera studier har genomförts för att automatisera tekniker med medicinska avbildningsmetoder, genom maskininlärnings tekniker, för att förutsäga och upptäcka bröstcancer. I den här rapport utvärderas och jämförs lämpligheten hos fem olika maskininlärningsmetoder att klassificera huruvida bröstcancer är av god- eller elakartad karaktär. Vidare undersöks hur metodernas effektivitet, med avseende på klassificeringssäkerhet samt exekveringstid, påverkas av förbehandlingsmetoden Principal component analysis samt ensemble metoden Bootstrap aggregating. I teorin skall båda förbehandlingsmetoder gynna vissa maskininlärningsmetoder och således öka klassificeringssäkerheten. Undersökningen är baserat på ett välkänt bröstcancer dataset från Wisconsin som används till att träna algoritmerna. Resultaten är evaluerade genom applicering av statistiska metoder där träffsäkerhet, känslighet och exekveringstid tagits till hänsyn. Följaktligen jämförs resultaten mellan de olika klassificerarna. Undersökningen visade att användningen av varken Principal component analysis eller Bootstrap aggregating resulterade i några nämnvärda förbättringar med avseende på klassificeringssäkerhet. Dock visade resultaten att klassificerarna Support vector machines Linear och RBF presterade bäst. I och med att undersökningen var begränsad med avseende på antalet dataset samt val av olika evalueringsmetoder med medförande justeringar är det därför osäkert huruvida det erhållna resultatet kan generaliseras över andra dataset och populationer.
Rigaki, Maria. "Adversarial Deep Learning Against Intrusion Detection Classifiers". Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64577.
Texto completo da fonteFord, John M. "Pulsar Search Using Supervised Machine Learning". NSUWorks, 2017. http://nsuworks.nova.edu/gscis_etd/1001.
Texto completo da fonteBurago, Igor. "Automated Attacks on Compression-Based Classifiers". Thesis, University of Oregon, 2014. http://hdl.handle.net/1794/18439.
Texto completo da fonteIshii, Shotaro, e David Ljunggren. "A Comparative Analysis of Robustness to Noise in Machine Learning Classifiers". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302532.
Texto completo da fonteData som härstammar från verkliga mätningar innehåller ofta förvrängningar i viss utsträckning. Sådana förvrängningar kan i vissa fall leda till försämrad klassificeringsnoggrannhet. I den här studien jämförs tre klassificeringsalgoritmer med avseende på hur pass robusta de är när den data de presenteras innehåller syntetiska förvrängningar. Mer specifikt så tränades och jämfördes slumpskogar, stödvektormaskiner och artificiella neuronnät på fyra olika mängder data med varierande nivåer av syntetiska förvrängningar. Sammanfattningsvis så presterade slumpskogen bäst, och var den mest robusta klassificeringsalgoritmen på åtta av tio förvrängningsnivåer, tätt följt av det artificiella neuronnätet. På de två återstående förvrängningsnivåerna presterade stödvektormaskinen med linjär kärna bäst och var den mest robusta klassificeringsalgoritmen.
Livros sobre o assunto "Security of machine learning classifiers"
Learning kernel classifiers: Theory and algorithms. Cambridge, Mass: MIT Press, 2002.
Encontre o texto completo da fonteChen, Xiaofeng, Willy Susilo e Elisa Bertino, eds. Cyber Security Meets Machine Learning. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6726-5.
Texto completo da fonteChen, Xiaofeng, Hongyang Yan, Qiben Yan e Xiangliang Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62223-7.
Texto completo da fonteChen, Xiaofeng, Hongyang Yan, Qiben Yan e Xiangliang Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62460-6.
Texto completo da fonteChen, Xiaofeng, Hongyang Yan, Qiben Yan e Xiangliang Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62463-7.
Texto completo da fonteChen, Xiaofeng, Xinyi Huang e Jun Zhang, eds. Machine Learning for Cyber Security. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30619-9.
Texto completo da fonteXu, Yuan, Hongyang Yan, Huang Teng, Jun Cai e Jin Li, eds. Machine Learning for Cyber Security. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20102-8.
Texto completo da fonteXu, Yuan, Hongyang Yan, Huang Teng, Jun Cai e Jin Li, eds. Machine Learning for Cyber Security. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20096-0.
Texto completo da fonteXu, Yuan, Hongyang Yan, Huang Teng, Jun Cai e Jin Li, eds. Machine Learning for Cyber Security. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20099-1.
Texto completo da fonteDolev, Shlomi, Oded Margalit, Benny Pinkas e Alexander Schwarzmann, eds. Cyber Security Cryptography and Machine Learning. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78086-9.
Texto completo da fonteCapítulos de livros sobre o assunto "Security of machine learning classifiers"
Padmavathi, G., D. Shanmugapriya e A. Roshni. "Evaluation of Supervised Machine Learning Classifiers to Detect Mobile Malware". In Progressions Made in Cyber-Security World, 10–21. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003302384-2.
Texto completo da fonteSingh, Amit Kumar, e Rajendra Pamula. "Vehicular Delay Tolerant Network Based Communication Using Machine Learning Classifiers". In Architectural Wireless Networks Solutions and Security Issues, 195–208. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0386-0_11.
Texto completo da fonteWu, Datong, Taotao Wu e Xiaotong Wu. "A Differentially Private Random Decision Tree Classifier with High Utility". In Machine Learning for Cyber Security, 376–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62223-7_32.
Texto completo da fontePatil, Rohini, e Kamal Shah. "Performance Evaluation of Machine Learning Classifiers for Prediction of Type 2 Diabetes Using Stress-Related Parameters". In Data Science and Security, 93–101. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2211-4_8.
Texto completo da fontePreethi, N., e W. Jaisingh. "Analysis of Fine Needle Aspiration Images by Using Hybrid Feature Selection and Various Machine Learning Classifiers". In Data Science and Security, 383–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2211-4_34.
Texto completo da fonteBojjagani, Sriramulu, B. Ramachandra Reddy, Mulagala Sandhya e Dinesh Reddy Vemula. "CybSecMLC: A Comparative Analysis on Cyber Security Intrusion Detection Using Machine Learning Classifiers". In Communications in Computer and Information Science, 232–45. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0419-5_19.
Texto completo da fonteBhattacharya, Madhubrata, e Debabrata Datta. "Development of Predictive Models of Diabetes Using Ensemble Machine Learning Classifier". In Advancements in Smart Computing and Information Security, 377–88. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-23092-9_30.
Texto completo da fonteAggarwal, Ritu, e Prateek Thakral. "Meticulous Presaging Arrhythmia Fibrillation for Heart Disease Classification Using Oversampling Method for Multiple Classifiers Based on Machine Learning". In Advances in Data Computing, Communication and Security, 99–107. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8403-6_9.
Texto completo da fonteArulmurugan, A., R. Kaviarasan e Saiyed Faiayaz Waris. "Fault Tolerance-Based Attack Detection Using Ensemble Classifier Machine Learning with IOT Security". In Big data management in Sensing, 115–48. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337355-9.
Texto completo da fonteTran, Quang Duy, e Fabio Di Troia. "Word Embeddings for Fake Malware Generation". In Silicon Valley Cybersecurity Conference, 22–37. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24049-2_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Security of machine learning classifiers"
Gao, Sida, e Geethapriya Thamilarasu. "Machine-Learning Classifiers for Security in Connected Medical Devices". In 2017 26th International Conference on Computer Communication and Networks (ICCCN). IEEE, 2017. http://dx.doi.org/10.1109/icccn.2017.8038507.
Texto completo da fonteKoli, J. D. "RanDroid: Android malware detection using random machine learning classifiers". In 2018 Technologies for Smart-City Energy Security and Power (ICSESP). IEEE, 2018. http://dx.doi.org/10.1109/icsesp.2018.8376705.
Texto completo da fonteRadhi Hadi, Mhmood, e Adnan Saher Mohammed. "A Novel Approach to Network Intrusion Detection System using Deep Learning for SDN: Futuristic Approach". In 4th International Conference on Machine Learning & Applications (CMLA 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121106.
Texto completo da fonteYazdani-Abyaneh, Amir-Hossein, e Marwan Krunz. "Automatic Machine Learning for Multi-Receiver CNN Technology Classifiers". In WiSec '22: 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3522783.3529524.
Texto completo da fonteThapa, Bipun. "Sentiment Analysis of Cyber Security Content on Twitter and Reddit". In 3rd International Conference on Data Mining and Machine Learning (DMML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120708.
Texto completo da fonteAlnashashibi, May, Wael Hadi e Nuha El-Khalili. "Predicting stress levels of automobile drivers using classical machine learning classifiers". In 2022 International Conference on Business Analytics for Technology and Security (ICBATS). IEEE, 2022. http://dx.doi.org/10.1109/icbats54253.2022.9759005.
Texto completo da fonteAdeshina, Qozeem Adeniyi, e Baidya Nath Saha. "Using Machine Learning to Predict Distributed Denial-of-Service (DDoS) Attack". In Intelligent Computing and Technologies Conference. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.115.21.
Texto completo da fonteVerticale, Giacomo. "On the Portability of Trained Machine Learning Classifiers for Early Application Identification". In 2008 Second International Conference on Emerging Security Information, Systems and Technologies (SECUREWARE). IEEE, 2008. http://dx.doi.org/10.1109/securware.2008.13.
Texto completo da fonteJamil, Hasibul, Ning Yang e Ning Weng. "Securing Home IoT Network with Machine Learning Based Classifiers". In 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). IEEE, 2021. http://dx.doi.org/10.1109/wf-iot51360.2021.9594932.
Texto completo da fonteAghakhani, Hojjat, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Ortolani, Davide Balzarotti, Giovanni Vigna e Christopher Kruegel. "When Malware is Packin' Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features". In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/ndss.2020.24310.
Texto completo da fonteRelatórios de organizações sobre o assunto "Security of machine learning classifiers"
Barreno, Marco, Blaine A. Nelson, Anthony D. Joseph e Doug Tygar. The Security of Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, abril de 2008. http://dx.doi.org/10.21236/ada519143.
Texto completo da fonteLucas, Christine, Emily Hadley, Jason Nance, Peter Baumgartner, Rita Thissen, David Plotner, Christine Carr e Aerian Tatum. Machine Learning for Medical Coding in Health Care Surveys. National Center for Health Statistics (U.S.), outubro de 2021. http://dx.doi.org/10.15620/cdc:109828.
Texto completo da fontePoppeliers, Christian. LDRD 218327: Seismic Spatial Gradients and Machine Learning-Based Classifiers for Explosion Monitoring. Office of Scientific and Technical Information (OSTI), setembro de 2021. http://dx.doi.org/10.2172/1854996.
Texto completo da fonteVerzi, Stephen, Raga Krishnakumar, Drew Levin, Daniel Krofcheck e Kelly Williams. Data Science and Machine Learning for Genome Security. Office of Scientific and Technical Information (OSTI), setembro de 2021. http://dx.doi.org/10.2172/1855003.
Texto completo da fonteCaley, Jeffrey. A Survey of Systems for Predicting Stock Market Movements, Combining Market Indicators and Machine Learning Classifiers. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.2000.
Texto completo da fonteRitchey, Ralph P., Garrett S. Payer e Richard E. Harang. Compilation of a Network Security/Machine Learning Toolchain for Android ARM Platforms. Fort Belvoir, VA: Defense Technical Information Center, julho de 2014. http://dx.doi.org/10.21236/ada609411.
Texto completo da fonteBuchanan, Ben. A National Security Research Agenda for Cybersecurity and Artificial Intelligence. Center for Security and Emerging Technology, maio de 2020. http://dx.doi.org/10.51593/2020ca001.
Texto completo da fonteBuchanan, Ben. The AI Triad and What It Means for National Security Strategy. Center for Security and Emerging Technology, agosto de 2020. http://dx.doi.org/10.51593/20200021.
Texto completo da fonteTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, janeiro de 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Texto completo da fontePerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, setembro de 2021. http://dx.doi.org/10.46337/210930.
Texto completo da fonte