Artigos de revistas sobre o tema "Security of machine learning classifiers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Security of machine learning classifiers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Atnafu, Surafel Mehari, e Prof (Dr ). Anuja Kumar Acharya. "Comparative Analysis of Intrusion Detection Attack Based on Machine Learning Classifiers". Indian Journal of Artificial Intelligence and Neural Networking 1, n.º 2 (10 de abril de 2021): 22–28. http://dx.doi.org/10.35940/ijainn.b1025.041221.
Texto completo da fonteAtnafu, Surafel Mehari, e Prof (Dr ). Anuja Kumar Acharya. "Comparative Analysis of Intrusion Detection Attack Based on Machine Learning Classifiers". Indian Journal of Artificial Intelligence and Neural Networking 1, n.º 2 (10 de abril de 2021): 22–28. http://dx.doi.org/10.54105/ijainn.b1025.041221.
Texto completo da fonteALGorain, Fahad T., e John A. Clark. "Covering Arrays ML HPO for Static Malware Detection". Eng 4, n.º 1 (9 de fevereiro de 2023): 543–54. http://dx.doi.org/10.3390/eng4010032.
Texto completo da fonteKatzir, Ziv, e Yuval Elovici. "Quantifying the resilience of machine learning classifiers used for cyber security". Expert Systems with Applications 92 (fevereiro de 2018): 419–29. http://dx.doi.org/10.1016/j.eswa.2017.09.053.
Texto completo da fonteGongada, Sandhya Rani, Muktevi Chakravarthy e Bhukya Mangu. "Power system contingency classification using machine learning technique". Bulletin of Electrical Engineering and Informatics 11, n.º 6 (1 de dezembro de 2022): 3091–98. http://dx.doi.org/10.11591/eei.v11i6.4031.
Texto completo da fonteMehanović, Dželila, e Jasmin Kevrić. "Phishing Website Detection Using Machine Learning Classifiers Optimized by Feature Selection". Traitement du Signal 37, n.º 4 (10 de outubro de 2020): 563–69. http://dx.doi.org/10.18280/ts.370403.
Texto completo da fonteDeshmukh, Miss Maithili, e Dr M. A. Pund. "Implementation Paper on Network Data Verification Using Machine Learning Classifiers Based on Reduced Feature Dimensions". International Journal for Research in Applied Science and Engineering Technology 10, n.º 4 (30 de abril de 2022): 2921–24. http://dx.doi.org/10.22214/ijraset.2022.41938.
Texto completo da fonteRunwal, Akshat. "Anomaly based Intrusion Detection System using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de setembro de 2021): 255–60. http://dx.doi.org/10.22214/ijraset.2021.37955.
Texto completo da fonteAbdulrezzak, Sarah, e Firas Sabir. "An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers". Journal of Engineering 29, n.º 2 (1 de fevereiro de 2023): 164–78. http://dx.doi.org/10.31026/j.eng.2023.02.11.
Texto completo da fonteSingh, Ravi, e Virender Ranga. "Performance Evaluation of Machine Learning Classifiers on Internet of Things Security Dataset". International Journal of Control and Automation 11, n.º 5 (31 de maio de 2018): 11–24. http://dx.doi.org/10.14257/ijca.2018.11.5.02.
Texto completo da fonteDeshmukh, Miss Maithili, e Dr M. A. Pund. "Review Paper on Network Data Verification Using Machine Learning Classifiers Based On Reduced Feature Dimensions". International Journal for Research in Applied Science and Engineering Technology 10, n.º 4 (30 de abril de 2022): 1592–95. http://dx.doi.org/10.22214/ijraset.2022.41586.
Texto completo da fonteAlkaaf, Howida Abuabker, Aida Ali, Siti Mariyam Shamsuddin e Shafaatunnur Hassan. "Exploring permissions in android applications using ensemble-based extra tree feature selection". Indonesian Journal of Electrical Engineering and Computer Science 19, n.º 1 (1 de julho de 2020): 543. http://dx.doi.org/10.11591/ijeecs.v19.i1.pp543-552.
Texto completo da fonteS.R., Chandrasekaran, e Dr Sabiyath Fatima N. "Speculating the Threat of Cardiovascular Disease Using Classifiers with User-Focused Security Evaluations". Webology 19, n.º 1 (20 de janeiro de 2022): 5529–46. http://dx.doi.org/10.14704/web/v19i1/web19372.
Texto completo da fonteSharma, Shweta. "OVERVIEW OF MACHINE LEARNING IN CYBERSECURITY COMPARATIVE ANALYSIS OF CLASSIFIERS USING WEKA". Journal of University of Shanghai for Science and Technology 23, n.º 08 (11 de agosto de 2021): 334–43. http://dx.doi.org/10.51201/jusst/21/08385.
Texto completo da fonteK, Poojitha. "Detection of Malware in Android Phones Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 7 (31 de julho de 2022): 3344–47. http://dx.doi.org/10.22214/ijraset.2022.45726.
Texto completo da fonteKhonde, Shraddha R., e Venugopal Ulagamuthalvi. "Hybrid Architecture for Distributed Intrusion Detection System Using Semi-supervised Classifiers in Ensemble Approach". Advances in Modelling and Analysis B 63, n.º 1-4 (31 de dezembro de 2020): 10–19. http://dx.doi.org/10.18280/ama_b.631-403.
Texto completo da fonteShibaikin, Sergei, Vladimir Nikulin e Andrei Abbakumov. "Analysis of machine learning methods for computer systems to ensure safety from fraudulent texts". Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics 2020, n.º 1 (27 de janeiro de 2020): 29–40. http://dx.doi.org/10.24143/2072-9502-2020-1-29-40.
Texto completo da fonteMahfouz, Ahmed, Abdullah Abuhussein, Deepak Venugopal e Sajjan Shiva. "Ensemble Classifiers for Network Intrusion Detection Using a Novel Network Attack Dataset". Future Internet 12, n.º 11 (26 de outubro de 2020): 180. http://dx.doi.org/10.3390/fi12110180.
Texto completo da fonteChinguwo, Michael Richard, e R. Dhanalakshmi. "Detecting Cloud Based Phishing Attacks Using Stacking Ensemble Machine Learning Technique". International Journal for Research in Applied Science and Engineering Technology 11, n.º 3 (31 de março de 2023): 360–67. http://dx.doi.org/10.22214/ijraset.2023.49422.
Texto completo da fonteAlothman, Zainab, Mouhammd Alkasassbeh e Sherenaz Al-Haj Baddar. "An efficient approach to detect IoT botnet attacks using machine learning". Journal of High Speed Networks 26, n.º 3 (27 de novembro de 2020): 241–54. http://dx.doi.org/10.3233/jhs-200641.
Texto completo da fontePise, Nitin. "APPLICATION OF MACHINE LEARNING FOR INTRUSION DETECTION SYSTEM". INFORMATION TECHNOLOGY IN INDUSTRY 9, n.º 1 (1 de março de 2021): 314–23. http://dx.doi.org/10.17762/itii.v9i1.134.
Texto completo da fonteAbid, Adnan, Ansar Abbas, Adel Khelifi, Muhammad Shoaib Farooq, Razi Iqbal e Uzma Farooq. "An architectural framework for information integration using machine learning approaches for smart city security profiling". International Journal of Distributed Sensor Networks 16, n.º 10 (outubro de 2020): 155014772096547. http://dx.doi.org/10.1177/1550147720965473.
Texto completo da fonteShroff, Jugal, Rahee Walambe, Sunil Kumar Singh e Ketan Kotecha. "Enhanced Security Against Volumetric DDoS Attacks Using Adversarial Machine Learning". Wireless Communications and Mobile Computing 2022 (11 de março de 2022): 1–10. http://dx.doi.org/10.1155/2022/5757164.
Texto completo da fonteKhan, Rijwan, Akhilesh Kumar Srivastava, Mahima Gupta, Pallavi Kumari e Santosh Kumar. "Medicolite-Machine Learning-Based Patient Care Model". Computational Intelligence and Neuroscience 2022 (25 de janeiro de 2022): 1–12. http://dx.doi.org/10.1155/2022/8109147.
Texto completo da fonteLee, Ting Rong, Je Sen Teh, Norziana Jamil, Jasy Liew Suet Yan e Jiageng Chen. "Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes". IEEE Access 9 (2021): 134052–64. http://dx.doi.org/10.1109/access.2021.3116468.
Texto completo da fonteAdithya Nallamuthu, Suresh. "A Hybrid Genetic-Neuro Algorithm for Cloud Intrusion Detection System". Journal of Computational Science and Intelligent Technologies 1, n.º 2 (2020): 15–25. http://dx.doi.org/10.53409/mnaa.jcsit20201203.
Texto completo da fonteAljably, Randa, Yuan Tian e Mznah Al-Rodhaan. "Preserving Privacy in Multimedia Social Networks Using Machine Learning Anomaly Detection". Security and Communication Networks 2020 (20 de julho de 2020): 1–14. http://dx.doi.org/10.1155/2020/5874935.
Texto completo da fonteAl-Zewairi, Malek, Sufyan Almajali e Moussa Ayyash. "Unknown Security Attack Detection Using Shallow and Deep ANN Classifiers". Electronics 9, n.º 12 (26 de novembro de 2020): 2006. http://dx.doi.org/10.3390/electronics9122006.
Texto completo da fonteAl-Akhras, Mousa, Mohammed Alawairdhi, Ali Alkoudari e Samer Atawneh. "Using Machine Learning to Build a Classification Model for IoT Networks to Detect Attack Signatures". International journal of Computer Networks & Communications 12, n.º 6 (30 de novembro de 2020): 99–116. http://dx.doi.org/10.5121/ijcnc.2020.12607.
Texto completo da fonteShatnawi, Ahmed S., Aya Jaradat, Tuqa Bani Yaseen, Eyad Taqieddin, Mahmoud Al-Ayyoub e Dheya Mustafa. "An Android Malware Detection Leveraging Machine Learning". Wireless Communications and Mobile Computing 2022 (6 de maio de 2022): 1–12. http://dx.doi.org/10.1155/2022/1830201.
Texto completo da fonteJaradat, Ameera S., Malek M. Barhoush e Rawan S. Bani Easa. "Network intrusion detection system: machine learning approach". Indonesian Journal of Electrical Engineering and Computer Science 25, n.º 2 (1 de fevereiro de 2022): 1151. http://dx.doi.org/10.11591/ijeecs.v25.i2.pp1151-1158.
Texto completo da fonteKhan, Riaz Ullah, Xiaosong Zhang, Rajesh Kumar, Abubakar Sharif, Noorbakhsh Amiri Golilarz e Mamoun Alazab. "An Adaptive Multi-Layer Botnet Detection Technique Using Machine Learning Classifiers". Applied Sciences 9, n.º 11 (11 de junho de 2019): 2375. http://dx.doi.org/10.3390/app9112375.
Texto completo da fonteAbed, Abdullah Suhail, Brwa Khalil Abdullah Ahmed, Sura Khalil Ibrahim, Musaddak Maher Abdul Zahra, Mohanad Ahmed Salih e Refed Adnan Jaleel. "Development of an Integrate E-Medical System Using Software Defined Networking and Machine Learning". Webology 19, n.º 1 (20 de janeiro de 2022): 3410–18. http://dx.doi.org/10.14704/web/v19i1/web19224.
Texto completo da fonteAlsulaiman, Lama, e Saad Al-Ahmadi. "Performance Evaluation of Machine Learning Techniques for DOS Detection in Wireless Sensor Network". International Journal of Network Security & Its Applications 13, n.º 2 (31 de março de 2021): 21–29. http://dx.doi.org/10.5121/ijnsa.2021.13202.
Texto completo da fonteKanaker, Hasan, Nader Abdel Karim, Samer A.B. Awwad, Nurul H.A. Ismail, Jamal Zraqou e Abdulla M. F. Al ali. "Trojan Horse Infection Detection in Cloud Based Environment Using Machine Learning". International Journal of Interactive Mobile Technologies (iJIM) 16, n.º 24 (20 de dezembro de 2022): 81–106. http://dx.doi.org/10.3991/ijim.v16i24.35763.
Texto completo da fonteGbenga*, Fadare Oluwaseun, Prof Adetunmbi Adebayo Olusola, Dr (Mrs) Oyinloye Oghenerukevwe Eloho e Dr Mogaji Stephen Alaba. "Towards Optimization of Malware Detection using Chi-square Feature Selection on Ensemble Classifiers". International Journal of Engineering and Advanced Technology 10, n.º 4 (30 de abril de 2021): 254–62. http://dx.doi.org/10.35940/ijeat.d2359.0410421.
Texto completo da fonteHammad, Baraa Tareq, Norziana Jamil, Ismail Taha Ahmed, Zuhaira Muhammad Zain e Shakila Basheer. "Robust Malware Family Classification Using Effective Features and Classifiers". Applied Sciences 12, n.º 15 (5 de agosto de 2022): 7877. http://dx.doi.org/10.3390/app12157877.
Texto completo da fonteNigus, Mersha, e H. L. Shashirekha. "A Comparison of Machine Learning and Deep Learning Models for Predicting Household Food Security Status". International Journal of Electrical and Electronics Research 10, n.º 2 (30 de junho de 2022): 308–11. http://dx.doi.org/10.37391/ijeer.100241.
Texto completo da fonteBangira, Tsitsi, Silvia Maria Alfieri, Massimo Menenti e Adriaan van Niekerk. "Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water". Remote Sensing 11, n.º 11 (5 de junho de 2019): 1351. http://dx.doi.org/10.3390/rs11111351.
Texto completo da fonteAlmaiah, Mohammed Amin, Omar Almomani, Adeeb Alsaaidah, Shaha Al-Otaibi, Nabeel Bani-Hani, Ahmad K. Al Hwaitat, Ali Al-Zahrani, Abdalwali Lutfi, Ali Bani Awad e Theyazn H. H. Aldhyani. "Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels". Electronics 11, n.º 21 (1 de novembro de 2022): 3571. http://dx.doi.org/10.3390/electronics11213571.
Texto completo da fonteThabtah, Fadi, e Firuz Kamalov. "Phishing Detection: A Case Analysis on Classifiers with Rules Using Machine Learning". Journal of Information & Knowledge Management 16, n.º 04 (23 de novembro de 2017): 1750034. http://dx.doi.org/10.1142/s0219649217500344.
Texto completo da fonteAzeez, Nureni Ayofe, Oluwanifise Ebunoluwa Odufuwa, Sanjay Misra, Jonathan Oluranti e Robertas Damaševičius. "Windows PE Malware Detection Using Ensemble Learning". Informatics 8, n.º 1 (10 de fevereiro de 2021): 10. http://dx.doi.org/10.3390/informatics8010010.
Texto completo da fonteGuo, You, Hector Marco-Gisbert e Paul Keir. "Mitigating Webshell Attacks through Machine Learning Techniques". Future Internet 12, n.º 1 (14 de janeiro de 2020): 12. http://dx.doi.org/10.3390/fi12010012.
Texto completo da fonteGumaste, Shweta, Narayan D. G., Sumedha Shinde e Amit K. "Detection of DDoS Attacks in OpenStack-based Private Cloud Using Apache Spark". Journal of Telecommunications and Information Technology 4 (30 de dezembro de 2020): 62–71. http://dx.doi.org/10.26636/jtit.2020.146120.
Texto completo da fonteBagui, Sikha, Dustin Mink, Subhash Bagui, Tirthankar Ghosh, Tom McElroy, Esteban Paredes, Nithisha Khasnavis e Russell Plenkers. "Detecting Reconnaissance and Discovery Tactics from the MITRE ATT&CK Framework in Zeek Conn Logs Using Spark’s Machine Learning in the Big Data Framework". Sensors 22, n.º 20 (20 de outubro de 2022): 7999. http://dx.doi.org/10.3390/s22207999.
Texto completo da fonteEssa, Hasanain Ali Al, e Wesam S. Bhaya. "Network Attacks Detection Depend on Majority Voting – Weighted Average for Feature Selection and Various Machine Learning Approaches". Webology 19, n.º 1 (20 de janeiro de 2022): 2054–66. http://dx.doi.org/10.14704/web/v19i1/web19139.
Texto completo da fonteYang, Hao, Qin He, Zhenyan Liu e Qian Zhang. "Malicious Encryption Traffic Detection Based on NLP". Security and Communication Networks 2021 (3 de agosto de 2021): 1–10. http://dx.doi.org/10.1155/2021/9960822.
Texto completo da fonteCho, Jaeik, Seonghyeon Gong e Ken Choi. "A Study on High-Speed Outlier Detection Method of Network Abnormal Behavior Data Using Heterogeneous Multiple Classifiers". Applied Sciences 12, n.º 3 (19 de janeiro de 2022): 1011. http://dx.doi.org/10.3390/app12031011.
Texto completo da fonteAslam, Muhammad, Dengpan Ye, Aqil Tariq, Muhammad Asad, Muhammad Hanif, David Ndzi, Samia Allaoua Chelloug, Mohamed Abd Elaziz, Mohammed A. A. Al-Qaness e Syeda Fizzah Jilani. "Adaptive Machine Learning Based Distributed Denial-of-Services Attacks Detection and Mitigation System for SDN-Enabled IoT". Sensors 22, n.º 7 (31 de março de 2022): 2697. http://dx.doi.org/10.3390/s22072697.
Texto completo da fonteHicham, Benradi, Chater Ahmed e Lasfar Abdelali. "Face recognition method combining SVM machine learning and scale invariant feature transform". E3S Web of Conferences 351 (2022): 01033. http://dx.doi.org/10.1051/e3sconf/202235101033.
Texto completo da fonte