Literatura científica selecionada sobre o tema "Short fibre-Reinforced polymer composites"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Short fibre-Reinforced polymer composites".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Short fibre-Reinforced polymer composites"
Piggott, Michael R. "Short Fibre Polymer Composites: a Fracture-Based Theory of Fibre Reinforcement". Journal of Composite Materials 28, n.º 7 (maio de 1994): 588–606. http://dx.doi.org/10.1177/002199839402800701.
Texto completo da fonteK V, Ambareesh. "Moisture Absorption Studies of COIR and Sisal Short Fiber Reinforced Polymer Composites". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de setembro de 2021): 116–27. http://dx.doi.org/10.22214/ijraset.2021.37928.
Texto completo da fonteBanthia, N., e A. J. Boyd. "Sprayed fibre-reinforced polymers for repairs". Canadian Journal of Civil Engineering 27, n.º 5 (1 de outubro de 2000): 907–15. http://dx.doi.org/10.1139/l00-027.
Texto completo da fonteBegum, K., M. A. Islam e M. M. Huque. "Investigation on the Tensile and Flexural Properties of Coir-fibre-reinforced Polypropylene Composites". Journal of Scientific Research 7, n.º 3 (1 de setembro de 2015): 97–111. http://dx.doi.org/10.3329/jsr.v7i3.23075.
Texto completo da fonteDickson, Andrew N., Hisham M. Abourayana e Denis P. Dowling. "3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication—A Review". Polymers 12, n.º 10 (24 de setembro de 2020): 2188. http://dx.doi.org/10.3390/polym12102188.
Texto completo da fonteSliseris, Janis, Libo Yan e Bohumil Kasal. "Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites". Composites Part B: Engineering 89 (março de 2016): 143–54. http://dx.doi.org/10.1016/j.compositesb.2015.11.038.
Texto completo da fonteSingha, A. S., e Vijay Kumar Thakur. "Synthesis and Characterization of ShortSaccaharum CilliareFibre Reinforced Polymer Composites". E-Journal of Chemistry 6, n.º 1 (2009): 34–38. http://dx.doi.org/10.1155/2009/176072.
Texto completo da fonteMłyniec, A., e T. Uhl. "Modelling and testing of ageing of short fibre reinforced polymer composites". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, n.º 1 (19 de setembro de 2011): 16–31. http://dx.doi.org/10.1177/0954406211411552.
Texto completo da fonteGloria-Esparza, C., J. Zurek, Qiang Yuan, Stuart Bateman e Kenong Xia. "Electrostatic Dissipative Glass Fibre Reinforced Composites". Key Engineering Materials 312 (junho de 2006): 123–26. http://dx.doi.org/10.4028/www.scientific.net/kem.312.123.
Texto completo da fonteElbadry, Elsayed A., GA Abdalla, M. Aboraia e EA Oraby. "Notch sensitivity of short and 2D plain woven glass fibres reinforced with different polymer matrix composites". Journal of Reinforced Plastics and Composites 36, n.º 15 (7 de abril de 2017): 1092–98. http://dx.doi.org/10.1177/0731684417702529.
Texto completo da fonteTeses / dissertações sobre o assunto "Short fibre-Reinforced polymer composites"
Morrisey, Ben. "Vibration Testing of Short Fibre Reinforced Polymer Composites". Thesis, KTH, Lättkonstruktioner, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261221.
Texto completo da fonteMortazavian, Seyyedvahid. "Fatigue Behavior and Modeling of Short Fiber Reinforced Polymer Composites". University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1437787779.
Texto completo da fonteParveen, Bushra. "Fibre Orientation and Breakage in Glass Fibre Reinforced Polymer Composite Systems: Experimental Validation of Models for Injection Mouldings. Validation of Short and Long Fibre Prediction Models within Autodesk Simulation Moldflow Insight 2014". Thesis, University of Bradford, 2014. http://hdl.handle.net/10454/14865.
Texto completo da fonteMeslin, Frédéric. "Propriétés rhéologiques des composites fibres courtes à l'état fondu". Cachan, Ecole normale supérieure, 1997. http://www.theses.fr/1997DENS0020.
Texto completo da fonteDespringre, Nicolas. "Analyse et modélisation des mécanismes d'endommagement et de déformation en fatigue multiaxiale de matériaux composites : polyamide renforcé par des fibres courtes". Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0058/document.
Texto completo da fonteThe current work focuses on a new micromechanical high cycle fatigue visco-damage model for short glass fiber reinforced thermoplastic composites, namely: PA66/GF30. This material, extensively used for automotive applications, has a specific microstructure which is induced by the injection process. The multi-scale developed approach is a modified Mori-Tanaka method that includes coated reinforcements and the evolution of micro-scale damage processes. Their description is based on the experimental investigations of damage mechanisms previously performed by the team. Damage chronologies have been proposed involving three different local degradation processes: fiber-matrix interface debonding/coating degradation, matrix microcracking and fiber breakage. Their occurrence strongly depends on the microstructure. The developed model integrates these damage kinetics and accounts for the complex matrix viscoelasticity and the reinforcement orientation distributions induced by the process. Each damage mechanism is introduced through an evolution law involving local stress fields computed at the microscale. The developed constitutive law at the representative volume element scale is implemented into a C++ scientific library, SMART+, and is designed to work with Finite Element Methods. The model identification is performed via reverse engineering, taking advantage of the multiscale experimental results: in-situ SEM tests as well as quantitative and qualitative μCT investigations
Jain, Ayush. "Development and Characterization of Multi-scale Polymer Composite Materials for Tribological Applications". Thesis, Luleå tekniska universitet, Maskinelement, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-65241.
Texto completo da fonteBunpot, Mai-Ngam. "Strength prediction in short fibre-reinforced thermoplastics". Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326535.
Texto completo da fonteLaurencin, Tanguy. "Étude de la rhéologie des suspensions de fibres non-newtoniennes par imagerie et simulation numérique 3D à l'échelle des fibres". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI013/document.
Texto completo da fonteThis study focuses on the processing of short fibre-reinforced polymer composites. The physical and mechanical properties of these materials are mainly affected by the position and orientation distribution of fibres induced during their forming. Thus, we analysed the flow-induced micro-mechanisms that arose at the fibre scale during the forming stage of these complex systems which behave as non-Newtonian fibre suspensions. For that purpose, an original approach was developed by combining 3D imaging technique and direct numerical simulation, both performed at the fibre scale. Hence, several model fibre suspensions with a non-Newtonian suspending fluid and with a concentration regime that ranged from dilute to concentrated were prepared . They were subjected to confined lubricated compression loadings using a rheometer mounted on a synchrotron X-ray microtomograph. Thanks to very short scanning times, 3D images of the evolving fibrous microstructures at high spatial resolution were recorded in real-time. These experiments were also simulated using a dedicated Finite Element library enabling an accurate description of fibre kinematics in complex suspending fluids thanks to high performance computation, level sets and adaptive anisotropic meshing. The efficiency of the numerical simulation from the dilute to semi-dilute concentration regimes was assessed through experimental and numerical comparisons.Then, we showed that the confinement effect and the non-Newtonian rheology of the suspending fluid had a weak effect on the fibre kinematics, if the fibres were sufficiently far from the compression platens, typically the fibre-platen distance should be larger than twice the fibre diameter. Otherwise, confinement effects occurred. Some extensions of the dumbbell model were proposed to correct the fibre kinematics in this flow conditions. In semi-dilute concentration, deviations of the fibre kinematics compared to the Jeffery’s predictions were also observed and related to hydrodynamic interactions between fibres. In this case, the predictions of Jeffery’s model and the related assumption of affine fibre motions are less relevant. In the concentrated regime, even if the overall orientation of fibre suspension could be astonishingly well described by using the Jeffery’s model, strong fluctuations on each fibre motion and rotation were observed. These deviations were induced by the numerous fibre-fibre contacts, which could be correctly predicted by the tube model
Hofmann, John. "Extension of the Method of Ellipses to Determining the Orientation of Long, Semi-flexible Fibers in Model 2- and 3-dimensional Geometries". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23921.
Texto completo da fontePh. D.
Shipton, Paul David. "The compounding of short fibre reinforced thermoplastic composites". Thesis, Brunel University, 1988. http://bura.brunel.ac.uk/handle/2438/5788.
Texto completo da fonteLivros sobre o assunto "Short fibre-Reinforced polymer composites"
Bernd, Lauke, e Mai Y. W. 1946-, eds. Science and engineering of short fibre reinforced polymers composites. Oxford: Woodhead Publishing, 2009.
Encontre o texto completo da fonteKozlov, G. V. Synergetics and fractal analysis of polymer composites filled with short fibers. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteKozlov, G. V. Synergetics and fractal analysis of polymer composites filled with short fibers. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteSalit, Mohd Sapuan, Mohammad Jawaid, Nukman Bin Yusoff e M. Enamul Hoque, eds. Manufacturing of Natural Fibre Reinforced Polymer Composites. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-07944-8.
Texto completo da fonteHerrmann, Heiko, e Jürgen Schnell, eds. Short Fibre Reinforced Cementitious Composites and Ceramics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00868-0.
Texto completo da fonteNatural fibre reinforced polymer composites: From macro to nanoscale. Paris: Éd. des Archives Contemporaines, 2009.
Encontre o texto completo da fonteShipton, Paul David. The compounding of short fibre reinforced thermoplastic composites. Uxbridge: Brunel University, 1988.
Encontre o texto completo da fonteKeller, Thomas. Use of fibre reinforced polymers in bridge construction. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2003. http://dx.doi.org/10.2749/sed007.
Texto completo da fonteWong, Rita Sheung Ying. Towards modelling of reinforced concrete members with externally-bonded fibre reinforced polymer (FRP) composites. Ottawa: National Library of Canada, 2001.
Encontre o texto completo da fonteScudder, Lawrence Philip. Characterisation and testing of carbon fibre reinforced polymer composites using laser generated ultrasound. [s.l.]: typescript, 1994.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Short fibre-Reinforced polymer composites"
Komal, Ujendra K., Manish K. Lila, Saurabh Chaitanya e Inderdeep Singh. "Fabrication of Short Fiber Reinforced Polymer Composites". In Reinforced Polymer Composites, 21–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527820979.ch2.
Texto completo da fonteOesch, Tyler, Ludwig Stelzner e Frank Weise. "Non-destructive Evaluation of the Contribution of Polymer-Fibre Orientation and Distribution Characteristics to Concrete Performance during Fire". In Short Fibre Reinforced Cementitious Composites and Ceramics, 51–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00868-0_4.
Texto completo da fonteShubhra, Quazi T. H. "CHAPTER 9. Long and Short Glass Fibre Reinforced Natural Rubber Composites". In Polymer Chemistry Series, 247–89. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737654-00247.
Texto completo da fonteBao, S. P., G. D. Liang e S. C. Tjong. "Fracture Behavior of Short Carbon Fiber Reinforced Polymer Composites". In Synthetic Polymer-Polymer Composites, 117–43. München: Carl Hanser Verlag GmbH & Co. KG, 2012. http://dx.doi.org/10.3139/9781569905258.004.
Texto completo da fonteDarlington, M. W. "Short Fibre Reinforced Thermoplastics: Properties and Design". In Durability of Polymer Based Composite Systems for Structural Applications, 80–98. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3856-7_5.
Texto completo da fonteDebnath, K., M. Roy Choudhury, G. Surya Rao e R. N. Mahapatra. "Milling Behavior of Injection Molded Short Fiber-Reinforced Green Composites". In Machining and Machinability of Fiber Reinforced Polymer Composites, 149–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4153-1_6.
Texto completo da fonteGanster, Johannes, e Hans-Peter Fink. "Man-Made Cellulose Short Fiber Reinforced Oil and Bio-Based Thermoplastics". In Cellulose Fibers: Bio- and Nano-Polymer Composites, 479–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_18.
Texto completo da fontePaltán, César, Josep Costa e Jorge Fajardo. "Computed Tomography of Polymer Composites Reinforced with Natural Short Fiber". In Computational Science and Its Applications – ICCSA 2019, 452–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24308-1_37.
Texto completo da fonteRao Devireddy, Siva Bhaskara, e Sandhyarani Biswas. "Processing and Mechanical Characterization of Short Banana-Jute Hybrid Fiber-Reinforced Polyester Composites". In Processing and Characterization of Multicomponent Polymer Systems, 77–100. Toronto : Apple Academic Press, 2019.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469794-5.
Texto completo da fonteWang, Ben, e Hang Gao. "Fibre Reinforced Polymer Composites". In Advances in Machining of Composite Materials, 15–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71438-3_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Short fibre-Reinforced polymer composites"
Kumar, Rahul, Chaldiganipalle Bhargav e Sumit Bhowmik. "Bamboo fibre reinforced thermoset and thermoplastic polymer composites: A short review". In INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND EDUCATION (RERE-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5049114.
Texto completo da fonteOthman, A. H., Z. A. Mohd Ishak e M. N. Ramdziah. "Effect of hygrothermal ageing behaviour on flexural properties of injection moulded short carbon fibre reinforced polycarbonate composites". In 3RD INTERNATIONAL POSTGRADUATE CONFERENCE ON MATERIALS, MINERALS & POLYMER (MAMIP) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016322.
Texto completo da fonteRytter, Jan. "Qualification Approach to Unbonded Flexible Pipes With Fibre Reinforced Armour Layer". In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51175.
Texto completo da fonteHe, Ge, Yucheng Liu, D. J. Bammann e M. F. Horstemeyer. "An Elastothermoviscoplasticity Anisotropic Damage Model for Short Fiber Reinforced Polymer Composites". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86286.
Texto completo da fonteLaspalas, Manuel, Miguel-Ángel Jiménez-Caballero, José-Luis Pelegay, José-Luis Núñez e Ismael Viejo. "Simulation Methodology Accounting for Process Induced Morphology in Short Fiber Reinforced Polymer Matrix Composites". In The 4th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2018. http://dx.doi.org/10.11159/iccpe18.119.
Texto completo da fonteTada, Naoya, Ming Jin, Takeshi Uemori e Junji Sakamoto. "Prediction of Fracture Location in Tensile Test of Short-Fiber-Self-Reinforced Polyethylene Composite Plates". In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93546.
Texto completo da fonteBoba, Katarzyna, Ian Bond e Richard Trask. "Thermal Ageing Mitigation of FRP Composites Using Vascular Networks". In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7615.
Texto completo da fonteMarashizadeh, Parisa, Mohammad Abshirini, Mrinal Saha e Yingtao Liu. "Numerical Interlaminar Shear Damage Analysis of Fiber Reinforced Composites Improved by ZnO Nanowires". In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23422.
Texto completo da fonteHayakawa, Tohru, Zhiyuan Zhang, Yuqiu Yang e Hiroyuki Hamada. "An Investigation on the Mechanical Property of Unidirectional Basalt Fiber Composites". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62821.
Texto completo da fonteGanguli, Sabyasachi, Ajit K. Roy, David Anderson e Josh Wong. "Thermally Conductive Epoxy Nanocomposites". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43347.
Texto completo da fonteRelatórios de organizações sobre o assunto "Short fibre-Reinforced polymer composites"
Trask, Richard S., Mark Hazzard e Tom Llewellyn-Jones. Additive Layer Manufacturing of Biologically Inspired Short Fibre Reinforced Composites. Fort Belvoir, VA: Defense Technical Information Center, março de 2014. http://dx.doi.org/10.21236/ada606966.
Texto completo da fontePemberton, R. G., D. Edser e MRL Gower. Optimisation of acid digestion conditions for volume fraction measurements of hard to digest fibre-reinforced polymer composites. National Physical Laboratory, setembro de 2020. http://dx.doi.org/10.47120/npl.mn12.
Texto completo da fonte