Literatura científica selecionada sobre o tema "Silicotitanates"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Silicotitanates".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Silicotitanates"
Su, Yali, Mari Lou Balmer e Bruce C. Bunker. "Raman Spectroscopic Studies of Silicotitanates". Journal of Physical Chemistry B 104, n.º 34 (agosto de 2000): 8160–69. http://dx.doi.org/10.1021/jp0018807.
Texto completo da fonteXu, Hongwu, Alexandra Navrotsky, May D. Nyman e Tina M. Nenoff. "Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system". Journal of Materials Research 15, n.º 3 (março de 2000): 815–23. http://dx.doi.org/10.1557/jmr.2000.0116.
Texto completo da fonteStrelko, V. V., V. V. Milyutin, V. M. Gelis, T. S. Psareva, I. Z. Zhuravlev, T. A. Shaposhnikova, V. G. Mil’grandt e A. I. Bortun. "Sorption of cesium radionuclides onto semicrystalline alkali metal silicotitanates". Radiochemistry 57, n.º 1 (janeiro de 2015): 73–78. http://dx.doi.org/10.1134/s1066362215010117.
Texto completo da fonteChitra, S., A. G. Shanmugamani, R. Sudha, S. Kalavathi e Biplob Paul. "Selective removal of cesium and strontium by crystalline silicotitanates". Journal of Radioanalytical and Nuclear Chemistry 312, n.º 3 (22 de abril de 2017): 507–15. http://dx.doi.org/10.1007/s10967-017-5249-3.
Texto completo da fonteClearfield, A., A. Tripathi e D. Medvedev. "In situX-ray study of hydrothermally prepared titanates and silicotitanates". Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 de agosto de 2005): c3. http://dx.doi.org/10.1107/s0108767305099873.
Texto completo da fonteZheng, Z., C. V. Philip, R. G. Anthony, J. L. Krumhansl, D. E. Trudell e J. E. Miller. "Ion Exchange of Group I Metals by Hydrous Crystalline Silicotitanates". Industrial & Engineering Chemistry Research 35, n.º 11 (janeiro de 1996): 4246–56. http://dx.doi.org/10.1021/ie960073k.
Texto completo da fonteClearfield, A., A. Tripathi, D. Medvedev, A. J. Celestian e J. B. Parise. "In situ type study of hydrothermally prepared titanates and silicotitanates". Journal of Materials Science 41, n.º 5 (março de 2006): 1325–33. http://dx.doi.org/10.1007/s10853-006-7317-x.
Texto completo da fonteAnthony, Rayford G., Robert G. Dosch, Ding Gu e C. V. Philip. "Use of silicotitanates for removing cesium and strontium from defense waste". Industrial & Engineering Chemistry Research 33, n.º 11 (novembro de 1994): 2702–5. http://dx.doi.org/10.1021/ie00035a020.
Texto completo da fonteKaminski, M. D., L. Nuñez, M. Pourfarzaneh e C. Negri. "Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitanates". Separation and Purification Technology 21, n.º 1-2 (novembro de 2000): 1–8. http://dx.doi.org/10.1016/s1383-5866(99)00062-3.
Texto completo da fonteChitra, S., S. Viswanathan, S. V. S. Rao e P. K. Sinha. "Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes". Journal of Radioanalytical and Nuclear Chemistry 287, n.º 3 (17 de outubro de 2010): 955–60. http://dx.doi.org/10.1007/s10967-010-0867-z.
Texto completo da fonteTeses / dissertações sobre o assunto "Silicotitanates"
Tratnjek, Toni. "Développement de silicotitanates à porosité hiérarchisée pour la capture du Strontium". Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0022.
Texto completo da fonteThe general idea of this thesis is based on the use of soft material (surfactants, micelles, emulsions) to texture materials with hierarchical porosity. These materials are intended for use in decontamination of effluents and their porous texturing is due to increased reactive properties and the possibility of being used in continuous mode. This texturing methodology is known and well documented for inorganic carbon or silica skeletons whereas to our knowledge there are no examples in the literature concerning silicotitanates or zeolites, which are known sorbents of the intended fission products. The general principle of these syntheses is based on the mixing of two oil-in-water (H/E) emulsions with high internal phase content. When the two emulsions are mixed, the inorganic network begins to grow in the aqueous phase by surrounding the oil drops. Control of parameters such as temperature, pH, or pressure (autoclave for hydrothermal synthesis) which directly regulate the polymerization reaction of the inorganic network should lead to the production of a monolith. All that remains then is to wash the material to release the porosity of the monolith. The emulsions will be characterized by optical microscopy to evaluate the size of the oil drops, while the materials will be characterized by gas adsorption and SAXS to know the properties of the mesopores network, by SEM to assess macropore size and by XRD to assess skeletal crystallinity
Milcent, Théo. "Mise en place d'une nouvelle méthodologie d'évaluation d'un échangeur d'ions minéral du point de vue de sa sélectivité : Cas particulier de l'optimisation structurale et microstructurale d'un silicotitanate cristallin (CST), appliqué à la décontamination d'effluents simultanément contaminés en Sr2+ et Cs+". Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0010.
Texto completo da fonteAlumino, titano and zircono-silicates zeolitic materials exhibit good performances in applications such as catalysis, gas separation and confinement. In addition, these kind of materials has been successfully used in different fields like petrochemistry, agriculture, medical, energy storage and nuclear decontamination. Their ion exchange properties make them very selective for radionuclides extraction (e.g. cesium or strontium) from wastewater treatment. Their composition (Al/Si, Ti/Si, Zr/Si ratio; “metal” nature and charge; labile ion nature, charge, size and concentration) and their framework structure (amorphous, 3D cage or tunnel) affect the ion exchange mechanism (i.e. kinetics, specificity, stability). These parameters may also modify the sorption capacity and the ion selectivity. In the present PhD, the relationship between structure and properties of several silicates will be studied in order to better understand their sorption mechanisms. To this end, the synthesis of different silicates will be performed and optimized. Then, their structures, morphologies and compositions will be analyzed by the application of different characterization techniques. Finally, this materials will be implemented to effluent treatments (i.e. model effluent and simulate real effluent) to evaluate their performances and find the connection between the structural and textural properties
Chen, Tzu-Yu. "Immobilisation of caesium from crystalline silicotitanate by hot isostatic pressing". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3712/.
Texto completo da fonteKim, Sung Hyun. "Ion exchange kinetics of cesium for various reaction designs using crystalline silicotitanate, UOP IONSIV IE-911". Texas A&M University, 2003. http://hdl.handle.net/1969.1/282.
Texto completo da fonteCapítulos de livros sobre o assunto "Silicotitanates"
Fox, K. M., F. C. Johnson e T. B. Edwards. "Incorporation of Mono Sodium Titanate and Crystalline Silicotitanate Feeds in High Level Nuclear Waste Glass". In Ceramic Transactions Series, 149–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144527.ch15.
Texto completo da fonteMiller, James E., Norman E. Brown, James L. Krumhansl, Daniel E. Trudell, Rayford G. Anthony e C. V. Philip. "Development and Properties of Cesium Selective Crystalline Silicotitanate (CST) Ion Exchangers for Radioactive Waste Applications". In Science and Technology for Disposal of Radioactive Tank Wastes, 269–86. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1543-6_21.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Silicotitanates"
Mimura, Hitoshi, Minoru Matsukura, Tomoya Kitagawa, Fumio Kurosaki, Akira Kirishima, Daisuke Akiyama e Nobuaki Sato. "Evaluation of Adsorption Properties of U(VI) for Various Inorganic Adsorbents". In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81338.
Texto completo da fonteDenton, Mark S., e Mercouri G. Kanatzidis. "Innovative Highly Selective Removal of Cesium and Strontium Utilizing a Newly Developed Class of Inorganic Ion Specific Media". In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16221.
Texto completo da fonteRelatórios de organizações sobre o assunto "Silicotitanates"
Balmer, M. L., e B. C. Bunker. Waste forms based on Cs-loaded silicotitanates. Office of Scientific and Technical Information (OSTI), abril de 1995. http://dx.doi.org/10.2172/86952.
Texto completo da fonteHarbour, J. R., e M. K. Andrews. Glass formulation requirements for DWPF coupled operations using crystalline silicotitanates. Office of Scientific and Technical Information (OSTI), janeiro de 1997. http://dx.doi.org/10.2172/491474.
Texto completo da fonteAndrews, M. K., e J. R. Harbour. Glass formulation requirements for Hanford coupled operations using crystalline silicotitanates (CST). Office of Scientific and Technical Information (OSTI), maio de 1997. http://dx.doi.org/10.2172/554132.
Texto completo da fonteDosch, R. G., E. A. Klavetter, H. P. Stephens, N. E. Brown e R. G. Anthony. Crystalline silicotitanates--new ion exchanger for selective removal of cesium and strontium from radwastes. Office of Scientific and Technical Information (OSTI), agosto de 1996. http://dx.doi.org/10.2172/369706.
Texto completo da fonteMcCabe, D. J. Crystalline silicotitanate examination results. Office of Scientific and Technical Information (OSTI), maio de 1995. http://dx.doi.org/10.2172/565003.
Texto completo da fonteDARREL, WALKER. Digestion of Crystalline Silicotitanate (CST). Office of Scientific and Technical Information (OSTI), novembro de 2004. http://dx.doi.org/10.2172/837905.
Texto completo da fonteSchlahta, S. N., R. Carreon e J. A. Gentilucci. Crystalline silicotitanate gate review analysis. Office of Scientific and Technical Information (OSTI), novembro de 1997. http://dx.doi.org/10.2172/565556.
Texto completo da fonteWalker, D. D. Modeling of Crystalline Silicotitanate Ion Exchange Columns. Office of Scientific and Technical Information (OSTI), março de 1999. http://dx.doi.org/10.2172/4975.
Texto completo da fonteBalmer, Marie Lou, Tina Nenoff e Navrotsky. New Silicotitanate Waste Forms; Development and Characterization. Office of Scientific and Technical Information (OSTI), junho de 1999. http://dx.doi.org/10.2172/829958.
Texto completo da fonteBalmer, Mari Lou, Tina Nenoff, Alexandra Navrotsky e Yali Su. New Silicotitanate Waste Forms; Development and Characterization. Office of Scientific and Technical Information (OSTI), junho de 2000. http://dx.doi.org/10.2172/829961.
Texto completo da fonte