Siga este link para ver outros tipos de publicações sobre o tema: Silicotitanates.

Artigos de revistas sobre o tema "Silicotitanates"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Silicotitanates".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Su, Yali, Mari Lou Balmer e Bruce C. Bunker. "Raman Spectroscopic Studies of Silicotitanates". Journal of Physical Chemistry B 104, n.º 34 (agosto de 2000): 8160–69. http://dx.doi.org/10.1021/jp0018807.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Xu, Hongwu, Alexandra Navrotsky, May D. Nyman e Tina M. Nenoff. "Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system". Journal of Materials Research 15, n.º 3 (março de 2000): 815–23. http://dx.doi.org/10.1557/jmr.2000.0116.

Texto completo da fonte
Resumo:
Microporous silicotitanates can potentially be used as ion exchangers for removal of Cs+ from radioactive waste solutions. The enthalpies of formation from constituent oxides for two series of silicotitanates at 298 K have been determined by drop-solution calorimetry into molten 2PbO · B2O3 at 974 K: the (Na1−xCsx)3Ti4Si3O15(OH) · nH2O (n = 4 to 5) phases with a cubic structure (P43m), and the (Na1−xCsx)3Ti4Si2O13(OH) · nH2O (n = 4 to 5) phases with a tetragonal structure (P42/mcm). The enthalpies of formation from the oxides for the cubic series become more exothermic as Cs/(Na + Cs) increases, whereas those for the tetragonal series become less exothermic. This result indicates that the incorporation of Cs in the cubic phase is somewhat thermodynamically favorable, whereas that in the tetragonal phase is thermodynamically unfavorable and kinetically driven. In addition, the cubic phases are more stable than the corresponding tetragonal phases with the same Cs/Na ratios. These disparities in the energetic behavior between the two series are attributed to their differences in both local bonding configuration and degree of hydration.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Strelko, V. V., V. V. Milyutin, V. M. Gelis, T. S. Psareva, I. Z. Zhuravlev, T. A. Shaposhnikova, V. G. Mil’grandt e A. I. Bortun. "Sorption of cesium radionuclides onto semicrystalline alkali metal silicotitanates". Radiochemistry 57, n.º 1 (janeiro de 2015): 73–78. http://dx.doi.org/10.1134/s1066362215010117.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chitra, S., A. G. Shanmugamani, R. Sudha, S. Kalavathi e Biplob Paul. "Selective removal of cesium and strontium by crystalline silicotitanates". Journal of Radioanalytical and Nuclear Chemistry 312, n.º 3 (22 de abril de 2017): 507–15. http://dx.doi.org/10.1007/s10967-017-5249-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Clearfield, A., A. Tripathi e D. Medvedev. "In situX-ray study of hydrothermally prepared titanates and silicotitanates". Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 de agosto de 2005): c3. http://dx.doi.org/10.1107/s0108767305099873.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Zheng, Z., C. V. Philip, R. G. Anthony, J. L. Krumhansl, D. E. Trudell e J. E. Miller. "Ion Exchange of Group I Metals by Hydrous Crystalline Silicotitanates". Industrial & Engineering Chemistry Research 35, n.º 11 (janeiro de 1996): 4246–56. http://dx.doi.org/10.1021/ie960073k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Clearfield, A., A. Tripathi, D. Medvedev, A. J. Celestian e J. B. Parise. "In situ type study of hydrothermally prepared titanates and silicotitanates". Journal of Materials Science 41, n.º 5 (março de 2006): 1325–33. http://dx.doi.org/10.1007/s10853-006-7317-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Anthony, Rayford G., Robert G. Dosch, Ding Gu e C. V. Philip. "Use of silicotitanates for removing cesium and strontium from defense waste". Industrial & Engineering Chemistry Research 33, n.º 11 (novembro de 1994): 2702–5. http://dx.doi.org/10.1021/ie00035a020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kaminski, M. D., L. Nuñez, M. Pourfarzaneh e C. Negri. "Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitanates". Separation and Purification Technology 21, n.º 1-2 (novembro de 2000): 1–8. http://dx.doi.org/10.1016/s1383-5866(99)00062-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Chitra, S., S. Viswanathan, S. V. S. Rao e P. K. Sinha. "Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes". Journal of Radioanalytical and Nuclear Chemistry 287, n.º 3 (17 de outubro de 2010): 955–60. http://dx.doi.org/10.1007/s10967-010-0867-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Curi, Rodrigo F., e Vittorio Luca. "In-column immobilization of Cs-saturated crystalline silicotitanates using phenolic resins". Environmental Science and Pollution Research 25, n.º 7 (21 de dezembro de 2017): 6850–58. http://dx.doi.org/10.1007/s11356-017-1019-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Gu, Ding, Luan Nguyen, C. V. Philip, M. E. Huckman, Rayford G. Anthony, James E. Miller e Daniel E. Trudell. "Cs+Ion Exchange Kinetics in Complex Electrolyte Solutions Using Hydrous Crystalline Silicotitanates". Industrial & Engineering Chemistry Research 36, n.º 12 (dezembro de 1997): 5377–83. http://dx.doi.org/10.1021/ie960338v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Larentzos, James P., Abraham Clearfield, Akhilesh Tripathi e Edward J. Maginn. "A Molecular Modeling Investigation of Cation and Water Siting in Crystalline Silicotitanates". Journal of Physical Chemistry B 108, n.º 45 (novembro de 2004): 17560–70. http://dx.doi.org/10.1021/jp047041s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Chitra, S., R. Sudha, S. Kalavathi, A. G. S. Mani, S. V. S. Rao e P. K. Sinha. "Optimization of Nb-substitution and Cs+/Sr+2 ion exchange in crystalline silicotitanates (CST)". Journal of Radioanalytical and Nuclear Chemistry 295, n.º 1 (12 de maio de 2012): 607–13. http://dx.doi.org/10.1007/s10967-012-1812-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Zheng, Zhixin, Ding Gu, Rayford G. Anthony e Elmer Klavetter. "Estimation of Cesium Ion Exchange Distribution Coefficients for Concentrated Electrolytic Solutions When Using Crystalline Silicotitanates". Industrial & Engineering Chemistry Research 34, n.º 6 (junho de 1995): 2142–47. http://dx.doi.org/10.1021/ie00045a026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Zheng, Z., R. G. Anthony e J. E. Miller. "Modeling Multicomponent Ion Exchange Equilibrium Utilizing Hydrous Crystalline Silicotitanates by a Multiple Interactive Ion Exchange Site Model". Industrial & Engineering Chemistry Research 36, n.º 6 (junho de 1997): 2427–34. http://dx.doi.org/10.1021/ie960546n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Milcent, Théo, Audrey Hertz, Yves Barré e Agnès Grandjean. "Influence of the Nb content and microstructure of sitinakite-type crystalline silicotitanates (CSTs) on their Sr2+ and Cs+ sorption properties". Chemical Engineering Journal 426 (dezembro de 2021): 131425. http://dx.doi.org/10.1016/j.cej.2021.131425.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Venkatesan, K. A., V. Sukumaran, M. P. Antony e T. G. Srinivasan. "Studies on the feasibility of using crystalline silicotitanates for the separation of cesium-137 from fast reactor high-level liquid waste". Journal of Radioanalytical and Nuclear Chemistry 280, n.º 1 (18 de março de 2009): 129–36. http://dx.doi.org/10.1007/s10967-008-7422-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Alahl, Amr A. Sayed, Hesham A. Ezzeldin, Abdullah A. Al-Kahtani, Sadanand Pandey e Yousra H. Kotp. "Synthesis of a Novel Photocatalyst Based on Silicotitanate Nanoparticles for the Removal of Some Organic Matter from Polluted Water". Catalysts 13, n.º 6 (8 de junho de 2023): 981. http://dx.doi.org/10.3390/catal13060981.

Texto completo da fonte
Resumo:
The use of waste from various agricultural sectors has recently drawn increased interest from the scientific, technological, ecological, economic, and social fields. As such, in this study, a novel production of an affordable and environmentally friendly photocatalyst of silicotitanate (S1, S2, and S3) made from silica solution (extracted from rice husk ash) and various molar ratios of titanium (IV) 2-ethylhexyl-oxide is reported. Following that, chitosan/silicotitanate (CHMix) nanocomposite material was created through a crosslinking reaction between chitosan and fabricated silicotitanate (S2). Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM-EDX), as well as N2 adsorption-desorption isotherm and zeta potential measurements were used to characterize each of the fabricated samples. Additionally, in comparison to neat chitosan, the newly fabricated material’s (CHMix) photocatalytic reactivity was investigated using two synthetic anionic dyes, reactive blue and Congo red, with decolorization rates of up to 95.76% and 99.9%, respectively. The decolorization results showed that CHMix is the most efficient photocatalyst for the degradation of reactive blue and Congo red. Reactive blue and Congo red’s molecular structures were almost completely broken when equilibrium was reached using sunlight, and the decolorization rate for both dyes was close to 100%. As a result, the combination of chitosan and silicotitanate, or CHMix, has an effective photocatalytic capability for dye degradation in both natural and concentrated sunlight.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Dyer, Alan, Jon Newton, Luke O’Brien e Scott Owens. "Studies on a synthetic sitinakite-type silicotitanate cation exchanger". Microporous and Mesoporous Materials 117, n.º 1-2 (janeiro de 2009): 304–8. http://dx.doi.org/10.1016/j.micromeso.2008.07.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Taylor, P. A., e C. H. Mattus. "Thermal And Chemical Stability Of Baseline And Improved Crystalline Silicotitanate". Separation Science and Technology 38, n.º 12-13 (8 de janeiro de 2003): 3031–48. http://dx.doi.org/10.1081/ss-120022585.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Piret, Paul, Michel Deliens e Michèle Pinet. "La trimounsite-(Y), nouveau silicotitanate de terres rares de Trimouns, Ariège, France: (TR)2Ti2SiO9". European Journal of Mineralogy 2, n.º 5 (4 de outubro de 1990): 725–30. http://dx.doi.org/10.1127/ejm/2/5/0725.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Celestian, Aaron J., James D. Kubicki, Jonathon Hanson, Abraham Clearfield e John B. Parise. "The Mechanism Responsible for Extraordinary Cs Ion Selectivity in Crystalline Silicotitanate". Journal of the American Chemical Society 130, n.º 35 (3 de setembro de 2008): 11689–94. http://dx.doi.org/10.1021/ja801134a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Warta, Andrew M., William A. Arnold e Edward L. Cussler. "Permeable Membranes Containing Crystalline Silicotitanate As Model Barriers for Cesium Ion". Environmental Science & Technology 39, n.º 24 (dezembro de 2005): 9738–43. http://dx.doi.org/10.1021/es0509681.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Hritzko, Benjamin J., D. Douglas Walker e N. H. Linda Wang. "Design of a carousel process for cesium removal using crystalline silicotitanate". AIChE Journal 46, n.º 3 (março de 2000): 552–64. http://dx.doi.org/10.1002/aic.690460314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Chen, Mengjun, Fu-Shen Zhang e Jianxin Zhu. "Effective utilization of waste cathode ray tube glass—Crystalline silicotitanate synthesis". Journal of Hazardous Materials 182, n.º 1-3 (outubro de 2010): 45–49. http://dx.doi.org/10.1016/j.jhazmat.2010.05.135.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Walker Jr., J., P. Taylor e D. Lee. "CESIUM REMOVAL FROM HIGH-pH, HIGH-SALT WASTEWATER USING CRYSTALLINE SILICOTITANATE SORBENT". Separation Science and Technology 34, n.º 6&7 (1999): 1167–81. http://dx.doi.org/10.1081/ss-100100703.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Latheef, I. M., M. E. Huckman e R. G. Anthony. "Modeling Cesium Ion Exchange on Fixed-Bed Columns of Crystalline Silicotitanate Granules". Industrial & Engineering Chemistry Research 39, n.º 5 (maio de 2000): 1356–63. http://dx.doi.org/10.1021/ie990748u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Walker, J. F., P. A. Taylor e D. D. Lee. "CESIUM REMOVAL FROM HIGH-pH, HIGH-SALT WASTEWATER USING CRYSTALLINE SILICOTITANATE SORBENT". Separation Science and Technology 34, n.º 6-7 (janeiro de 1999): 1167–81. http://dx.doi.org/10.1080/01496399908951087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Young, J. S., Y. Su, L. Li e M. L. Balmer. "Characterization of Aluminosilicate Formation on the Surface of a Crystalline Silicotitanate Ion Exchanger". Microscopy and Microanalysis 7, S2 (agosto de 2001): 498–99. http://dx.doi.org/10.1017/s1431927600028567.

Texto completo da fonte
Resumo:
Millions of gallons of high-level radioactive waste are contained in underground tanks at U. S. Department of Energy sites such as Hanford and Savannah River. Most of the radioactivity is due to 137Cs and 90Sr, which must be extracted in order to concentrate the waste. An ion exchanger, crystalline silicotitanate IONSIV® IE911, is being considered for separation of Cs at the Savannah River Site (SRS). While the performance of this ion exchanger has been well characterized under normal operating conditions, Cs removal at slightly elevated temperatures, such as those that may occur in a process upset, is not clear. Our recent study indicates that during exposure to SRS simulant at 55°C and 80°C, an aluminosilicate coating formed on the exchanger surface. There was concern that the coating would affect its ion exchange properties. A LEO 982 field emission scanning electron microscope (FESEM) and an Oxford ISIS energy dispersive x-ray spectrometer (EDS) were used to characterize the coating.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Nyman, M., B. X. Gu, L. M. Wang, R. C. Ewing e T. M. Nenoff. "Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve". Microporous and Mesoporous Materials 40, n.º 1-3 (novembro de 2000): 115–25. http://dx.doi.org/10.1016/s1387-1811(00)00247-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Lee, Eil-Hee, Keun-Young Lee, Kwang-Wook Kim, Ik-Soo Kim, Dong-Yong Chung e Jei-Kwon Moon. "Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste". Journal of Nuclear Fuel Cycle and Waste Technology 13, n.º 3 (30 de setembro de 2015): 171–80. http://dx.doi.org/10.7733/jnfcwt.2015.13.3.171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Huckman, M., I. Latheef e R. Anthony. "ION EXCHANGE OF SEVERAL RADIONUCLIDES ON THE HYDROUS CRYSTALLINE SILICOTITANATE, UOP IONSIV IE-911". Separation Science and Technology 34, n.º 6&7 (1999): 1145–66. http://dx.doi.org/10.1081/ss-100100702.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Rovira, A. M., S. K. Fiskum, H. A. Colburn, J. R. Allred, M. R. Smoot, R. A. Peterson e K. M. Colisi. "Cesium ion exchange testing using crystalline silicotitanate with Hanford tank waste 241-AP-107". Separation Science and Technology 54, n.º 12 (22 de fevereiro de 2019): 1942–51. http://dx.doi.org/10.1080/01496395.2019.1577895.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Westesen, Amy M., Sandra K. Fiskum, Truc T. Trang-Le, Andrew M. Carney, Reid A. Peterson, Matthew R. Landon e Kristin A. Colosi. "Small to Full-Height Scale Comparisons of Cesium Ion Exchange Performance with Crystalline Silicotitanate". Solvent Extraction and Ion Exchange 39, n.º 1 (12 de outubro de 2020): 104–22. http://dx.doi.org/10.1080/07366299.2020.1831142.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Huckman, M. E., I. M. Latheef e R. G. Anthony. "ION EXCHANGE OF SEVERAL RADIONUCLIDES ON THE HYDROUS CRYSTALLINE SILICOTITANATE, UOP IONSIV IE-911". Separation Science and Technology 34, n.º 6-7 (janeiro de 1999): 1145–66. http://dx.doi.org/10.1080/01496399908951086.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Wang, Rong, Zhenggang Luo, Qiuxia Tan, Rui Wang, Shuyuan Chen, Jiancheng Shu, Mengjun Chen e Zhengxue Xiao. "Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption". Environmental Science and Pollution Research 27, n.º 4 (12 de dezembro de 2019): 4404–13. http://dx.doi.org/10.1007/s11356-019-06907-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Attallah, Mohamed F., Amira H. Elgazzar, Emad H. Borai e Abdou S. El-Tabl. "Preparation and characterization of aluminum silicotitanate: ion exchange behavior for some lanthanides and iron". Journal of Chemical Technology & Biotechnology 91, n.º 8 (30 de setembro de 2015): 2243–52. http://dx.doi.org/10.1002/jctb.4810.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

El-Naggar, I. M., E. S. Sheneshen e E. A. Abdel-Galil. "Diffusion mechanism of Co2+, Cu2+, Cd2+, Cs+, and Pb2+ions in the particles of polyaniline silicotitanate". Particulate Science and Technology 34, n.º 3 (30 de julho de 2015): 373–79. http://dx.doi.org/10.1080/02726351.2015.1063099.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Smith, Frank G., Si Young Lee, William D. King e Daniel J. McCabe. "Comparisons of Crystalline Silicotitanate and Resorcinol Formaldehyde Media for Cesium Removal by In-tank Column Processing". Separation Science and Technology 43, n.º 9-10 (18 de julho de 2008): 2929–42. http://dx.doi.org/10.1080/01496390802119382.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Kamble, Priyanka, Prithwish Sinha Roy, Dayamoy Banerjee, Arvind Ananthanarayanan, Jayesh G. Shah, Gopalakrishnan Sugilal e Kailash Agarwal. "A new composite of crystalline silicotitanate for sequestration of 137Cs and 90Sr from low-level aqueous waste solution". Separation Science and Technology 55, n.º 9 (21 de abril de 2019): 1603–10. http://dx.doi.org/10.1080/01496395.2019.1605382.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Campbell, Emily L., Sandra K. Fiskum, Truc T. Trang-Le e Reid A. Peterson. "Ion Exchange of Selected Group II Metals and Lead by Crystalline Silicotitanate and Competition for Cs Exchange Sites". Solvent Extraction and Ion Exchange 39, n.º 1 (16 de outubro de 2020): 90–103. http://dx.doi.org/10.1080/07366299.2020.1830481.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Park, Younjin, Won Sik Shin, G. Sankara Reddy, Soo-Jeong Shin e Sang-June Choi. "Use of Nano Crystalline Silicotitanate for the Removal of Cs, Co and Sr from Low-Level Liquid Radioactive Waste". Journal of Nanoelectronics and Optoelectronics 5, n.º 2 (1 de agosto de 2010): 238–42. http://dx.doi.org/10.1166/jno.2010.1101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Mostafa, M., M. A. Tawfic, M. A. El-Absy, H. E. Ramadan e S. A. Sadeek. "Preparation of 137Cs-Loaded Silicotitanate Sealed Source and Standardization of Its Activity by DETEFF Code and Efficiency Transfer Concept". Radiochemistry 61, n.º 6 (novembro de 2019): 741–47. http://dx.doi.org/10.1134/s1066362219060171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Todd, T. A., e V. N. Romanovskiy. "A Comparison of Crystalline Silicotitanate and Ammonium Molybdophosphate-Polyacrylonitrile Composite Sorbent for the Separation of Cesium from Acidic Waste". Radiochemistry 47, n.º 4 (julho de 2005): 398–402. http://dx.doi.org/10.1007/s11137-005-0109-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Cherry, Brian R., May Nyman e Todd M. Alam. "Investigation of cation environment and framework changes in silicotitanate exchange materials using solid-state 23Na, 29Si, and 133Cs MAS NMR". Journal of Solid State Chemistry 177, n.º 6 (junho de 2004): 2079–93. http://dx.doi.org/10.1016/j.jssc.2004.02.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Zhao, Xudong, Qinghui Meng, Geng Chen, Zhihao Wu, Guangai Sun, Guobing Yu, Liusi Sheng, Hanqin Weng e Mingzhang Lin. "An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution". Chemical Engineering Journal 352 (novembro de 2018): 133–42. http://dx.doi.org/10.1016/j.cej.2018.06.175.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

El-Naggar, I. M., E. S. Sheneshen e E. A. Abdel-Galil. "Retention behavior studies for the removal of some hazardous metal ions from waste solutions using polyaniline silicotitanate as composite cation exchanger". Desalination and Water Treatment 56, n.º 7 (26 de agosto de 2014): 1820–28. http://dx.doi.org/10.1080/19443994.2014.952672.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Nyman, M., F. Bonhomme, D. M. Teter, R. S. Maxwell, B. X. Gu, L. M. Wang, R. C. Ewing e T. M. Nenoff. "Integrated Experimental and Computational Methods for Structure Determination and Characterization of a New, Highly Stable Cesium Silicotitanate Phase, Cs2TiSi6O15(SNL-A)". Chemistry of Materials 12, n.º 11 (novembro de 2000): 3449–58. http://dx.doi.org/10.1021/cm000259g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Grandjean, Agnès, Yves Barré, Audrey Hertz, Virginie Fremy, Jérémy Mascarade, Eric Louradour e Thierry Prevost. "Comparing hexacyanoferrate loaded onto silica, silicotitanate and chabazite sorbents for Cs extraction with a continuous-flow fixed-bed setup: Methods and pitfalls". Process Safety and Environmental Protection 134 (fevereiro de 2020): 371–80. http://dx.doi.org/10.1016/j.psep.2019.12.024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia