Artigos de revistas sobre o tema "Skeletal muscle fibrosis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Skeletal muscle fibrosis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Mahdy, Mohamed A. A. "Skeletal muscle fibrosis: an overview". Cell and Tissue Research 375, n.º 3 (12 de novembro de 2018): 575–88. http://dx.doi.org/10.1007/s00441-018-2955-2.
Texto completo da fonteAmani, Majid, Masoud Rahmati, Mohammad Fathi e Hasan Ahmadvand. "Reduce Muscle Fibrosis through Exercise via NRG1/ErbB2 Modification in Diabetic Rats". Journal of Diabetes Research 2020 (14 de maio de 2020): 1–8. http://dx.doi.org/10.1155/2020/6053161.
Texto completo da fonteMeyer, Gretchen A., e Richard L. Lieber. "Skeletal muscle fibrosis develops in response to desmin deletion". American Journal of Physiology-Cell Physiology 302, n.º 11 (1 de junho de 2012): C1609—C1620. http://dx.doi.org/10.1152/ajpcell.00441.2011.
Texto completo da fonteZhao, Na, Bo Liu, Si-Wen Liu, Wei Zhang, Hua-Nan Li, Geng Pang, Xiong-Fei Luo e Jin-Gui Wang. "The Combination of Electroacupuncture and Massage Therapy Alleviates Myofibroblast Transdifferentiation and Extracellular Matrix Production in Blunt Trauma-Induced Skeletal Muscle Fibrosis". Evidence-Based Complementary and Alternative Medicine 2021 (7 de julho de 2021): 1–10. http://dx.doi.org/10.1155/2021/5543468.
Texto completo da fonteLieber, Richard L., e Samuel R. Ward. "Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis". American Journal of Physiology-Cell Physiology 305, n.º 3 (1 de agosto de 2013): C241—C252. http://dx.doi.org/10.1152/ajpcell.00173.2013.
Texto completo da fonteMoyer, Adam L., e Kathryn R. Wagner. "Regeneration versus fibrosis in skeletal muscle". Current Opinion in Rheumatology 23, n.º 6 (novembro de 2011): 568–73. http://dx.doi.org/10.1097/bor.0b013e32834bac92.
Texto completo da fonteLi, Zhao Bo, Helen D. Kollias e Kathryn R. Wagner. "Myostatin Directly Regulates Skeletal Muscle Fibrosis". Journal of Biological Chemistry 283, n.º 28 (3 de maio de 2008): 19371–78. http://dx.doi.org/10.1074/jbc.m802585200.
Texto completo da fontePidlisetskyy, Andriy, Serhii Savosko, Igor Gayovich, Oleksii Dolhopolov e Volodymyr Biliavskyi. "THE ULTRASONOGRAPHY EXAMINATION OF SKELETAL MUSCLES IN TRAUMATIC ISCHEMIA (EXPERIMENTAL STUDY)". Wiadomości Lekarskie 76, n.º 1 (janeiro de 2023): 175–81. http://dx.doi.org/10.36740/wlek202301124.
Texto completo da fonteChen, Wan-Jing, I.-Hsuan Lin, Chien-Wei Lee e Yi-Fan Chen. "Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury". International Journal of Molecular Sciences 22, n.º 4 (20 de fevereiro de 2021): 2123. http://dx.doi.org/10.3390/ijms22042123.
Texto completo da fonteTonogai, Ichiro, e Ichiro Tonogai. "Influence of Platelet Rich Plasma on the Skeletal Muscle Fibrosis after Limb Lengthening in Mice". Foot & Ankle Orthopaedics 5, n.º 4 (1 de outubro de 2020): 2473011420S0046. http://dx.doi.org/10.1177/2473011420s00468.
Texto completo da fonteGallardo, Felipe S., Adriana Córdova-Casanova e Enrique Brandan. "The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin–lysophosphatidic acid as a new therapeutic target?" Journal of Cell Communication and Signaling 15, n.º 3 (10 de março de 2021): 317–34. http://dx.doi.org/10.1007/s12079-021-00610-w.
Texto completo da fonteChoi, Alee, Sang Eon Park, Jang Bin Jeong, Suk-joo Choi, Soo-young Oh, Gyu Ha Ryu, Jeehun Lee, Hong Bae Jeon e Jong Wook Chang. "Anti-Fibrotic Effect of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells on Skeletal Muscle Cells, Mediated by Secretion of MMP-1". International Journal of Molecular Sciences 21, n.º 17 (29 de agosto de 2020): 6269. http://dx.doi.org/10.3390/ijms21176269.
Texto completo da fonteYosef, Benyam, Yu Zhou, Kathryn Mouschouris, James Poteracki, Shay Soker e Tracy Criswell. "N-Acetyl-L-Cysteine Reduces Fibrosis and Improves Muscle Function After Acute Compartment Syndrome Injury". Military Medicine 185, Supplement_1 (janeiro de 2020): 25–34. http://dx.doi.org/10.1093/milmed/usz232.
Texto completo da fonteRebolledo, Daniela L., María José Acuña e Enrique Brandan. "Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides". International Journal of Molecular Sciences 22, n.º 10 (15 de maio de 2021): 5234. http://dx.doi.org/10.3390/ijms22105234.
Texto completo da fonteTrensz, Frédéric, Sonia Haroun, Alexandre Cloutier, Martin V. Richter e Guillaume Grenier. "A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the Wnt canonical pathway". American Journal of Physiology-Cell Physiology 299, n.º 5 (novembro de 2010): C939—C947. http://dx.doi.org/10.1152/ajpcell.00253.2010.
Texto completo da fonteSwaggart, Kayleigh A., Ahlke Heydemann, Abraham A. Palmer e Elizabeth M. McNally. "Distinct genetic regions modify specific muscle groups in muscular dystrophy". Physiological Genomics 43, n.º 1 (janeiro de 2011): 24–31. http://dx.doi.org/10.1152/physiolgenomics.00172.2010.
Texto completo da fonteSmith, Lucas R., e Elisabeth R. Barton. "Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle inmdxmice". American Journal of Physiology-Cell Physiology 306, n.º 10 (15 de maio de 2014): C889—C898. http://dx.doi.org/10.1152/ajpcell.00383.2013.
Texto completo da fonteChan, Yi-Sheng, Yong Li, William Foster, Takashi Horaguchi, George Somogyi, Freddie H. Fu e Johnny Huard. "Antifibrotic effects of suramin in injured skeletal muscle after laceration". Journal of Applied Physiology 95, n.º 2 (agosto de 2003): 771–80. http://dx.doi.org/10.1152/japplphysiol.00915.2002.
Texto completo da fonteKharraz, Yacine, Joana Guerra, Patrizia Pessina, Antonio L. Serrano e Pura Muñoz-Cánoves. "Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy". BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/965631.
Texto completo da fonteGrabowska, Iwona, Malgorzata Zimowska, Karolina Maciejewska, Zuzanna Jablonska, Anna Bazga, Michal Ozieblo, Wladyslawa Streminska, Joanna Bem, Edyta Brzoska e Maria Ciemerych. "Adipose Tissue-Derived Stromal Cells in Matrigel Impact the Regeneration of Severely Damaged Skeletal Muscles". International Journal of Molecular Sciences 20, n.º 13 (5 de julho de 2019): 3313. http://dx.doi.org/10.3390/ijms20133313.
Texto completo da fonteBirbrair, Alexander, Tan Zhang, Zhong-Min Wang, Maria Laura Messi, Akiva Mintz e Osvaldo Delbono. "Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle". American Journal of Physiology-Cell Physiology 305, n.º 11 (1 de dezembro de 2013): C1098—C1113. http://dx.doi.org/10.1152/ajpcell.00171.2013.
Texto completo da fonteIsmaeel, Ahmed, Jeong-Su Kim, Jeffrey S. Kirk, Robert S. Smith, William T. Bohannon e Panagiotis Koutakis. "Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review". International Journal of Molecular Sciences 20, n.º 10 (17 de maio de 2019): 2446. http://dx.doi.org/10.3390/ijms20102446.
Texto completo da fonteYan, Mingyang, Rongguo Wang, Shouyao Liu, Ying Chen, Peng Lin, Tengqi Li e Yunting Wang. "The Mechanism of Electroacupuncture at Zusanli Promotes Macrophage Polarization during the Fibrotic Process in Contused Skeletal Muscle". European Surgical Research 60, n.º 5-6 (2019): 196–207. http://dx.doi.org/10.1159/000503130.
Texto completo da fonteNegishi, Shinichi, Yong Li, Arvydas Usas, Freddie H. Fu e Johnny Huard. "The Effect of Relaxin Treatment on Skeletal Muscle Injuries". American Journal of Sports Medicine 33, n.º 12 (dezembro de 2005): 1816–24. http://dx.doi.org/10.1177/0363546505278701.
Texto completo da fonteIqbal, Aqsa, Ulrike May, Stuart N. Prince, Tero A. H. Järvinen e Ahlke Heydemann. "Systemically Administered Homing Peptide Targets Dystrophic Lesions and Delivers Transforming Growth Factor-β (TGFβ) Inhibitor to Attenuate Murine Muscular Dystrophy Pathology". Pharmaceutics 13, n.º 9 (18 de setembro de 2021): 1506. http://dx.doi.org/10.3390/pharmaceutics13091506.
Texto completo da fonteHuebner, Kyla D., Davinder S. Jassal, Orna Halevy, Mark Pines e Judy E. Anderson. "Functional resolution of fibrosis in mdx mouse dystrophic heart and skeletal muscle by halofuginone". American Journal of Physiology-Heart and Circulatory Physiology 294, n.º 4 (abril de 2008): H1550—H1561. http://dx.doi.org/10.1152/ajpheart.01253.2007.
Texto completo da fonteBarry, Sinead C., e Charles G. Gallagher. "Corticosteroids and skeletal muscle function in cystic fibrosis". Journal of Applied Physiology 95, n.º 4 (outubro de 2003): 1379–84. http://dx.doi.org/10.1152/japplphysiol.00506.2002.
Texto completo da fonteAkpulat, Uğur, İlyas Onbaşılar e Y. Çetin Kocaefe. "Tenotomy immobilization as a model to investigate skeletal muscle fibrosis (with emphasis on Secreted frizzled-related protein 2)". Physiological Genomics 48, n.º 6 (junho de 2016): 397–408. http://dx.doi.org/10.1152/physiolgenomics.00010.2016.
Texto completo da fonteMorris, C. A., J. T. Selsby, L. D. Morris, K. Pendrak e H. L. Sweeney. "Bowman-Birk inhibitor attenuates dystrophic pathology in mdx mice". Journal of Applied Physiology 109, n.º 5 (novembro de 2010): 1492–99. http://dx.doi.org/10.1152/japplphysiol.01283.2009.
Texto completo da fonteWhitehead, Nicholas P., Min Jeong Kim, Kenneth L. Bible, Marvin E. Adams e Stanley C. Froehner. "A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy". Proceedings of the National Academy of Sciences 112, n.º 41 (28 de setembro de 2015): 12864–69. http://dx.doi.org/10.1073/pnas.1509536112.
Texto completo da fonteGibson, Sarah E., Carol F. Farver e Richard A. Prayson. "Multiorgan Involvement in Nephrogenic Fibrosing Dermopathy: An Autopsy Case and Review of the Literature". Archives of Pathology & Laboratory Medicine 130, n.º 2 (1 de fevereiro de 2006): 209–12. http://dx.doi.org/10.5858/2006-130-209-miinfd.
Texto completo da fonteRosero Salazar, D. H., P. L. Carvajal Monroy, F. A. D. T. G. Wagener e J. W. Von den Hoff. "Orofacial Muscles: Embryonic Development and Regeneration after Injury". Journal of Dental Research 99, n.º 2 (1 de novembro de 2019): 125–32. http://dx.doi.org/10.1177/0022034519883673.
Texto completo da fonteStepien, David M., Charles Hwang, Simone Marini, Chase A. Pagani, Michael Sorkin, Noelle D. Visser, Amanda K. Huber et al. "Tuning Macrophage Phenotype to Mitigate Skeletal Muscle Fibrosis". Journal of Immunology 204, n.º 8 (11 de março de 2020): 2203–15. http://dx.doi.org/10.4049/jimmunol.1900814.
Texto completo da fonteBarry, S. C., e C. G. Gallagher. "Corticosteroids and Skeletal Muscle Function in Cystic Fibrosis." Cardiopulmonary Physical Therapy Journal 15, n.º 1 (março de 2004): 30. http://dx.doi.org/10.1097/01823246-200415010-00014.
Texto completo da fonteJong, Wietze de, Wim M. C. van Aalderen, Jan Kraan, Gerard H. Koëter e Cees P. van der Schans. "Skeletal muscle strength in patients with cystic fibrosis". Physiotherapy Theory and Practice 17, n.º 1 (janeiro de 2001): 23–28. http://dx.doi.org/10.1080/09593980151143237.
Texto completo da fonteZanotti, S., S. Gibertini, F. Blasevich, S. Saredi, C. Bragato, A. Ruggieri, R. Mantegazza, L. Maggi e M. Mora. "Potential role of exosomes in skeletal muscle fibrosis". Neuromuscular Disorders 27 (outubro de 2017): S169. http://dx.doi.org/10.1016/j.nmd.2017.06.275.
Texto completo da fonteSerrano, Antonio L., e Pura Muñoz-Cánoves. "Regulation and dysregulation of fibrosis in skeletal muscle". Experimental Cell Research 316, n.º 18 (novembro de 2010): 3050–58. http://dx.doi.org/10.1016/j.yexcr.2010.05.035.
Texto completo da fonteMann, Christopher J., Eusebio Perdiguero, Yacine Kharraz, Susana Aguilar, Patrizia Pessina, Antonio L. Serrano e Pura Muñoz-Cánoves. "Aberrant repair and fibrosis development in skeletal muscle". Skeletal Muscle 1, n.º 1 (2011): 21. http://dx.doi.org/10.1186/2044-5040-1-21.
Texto completo da fonteMatsumoto, Yoshinari, Hideki Fujii, Mika Harima, Haruna Okamura, Yoshimi Yukawa-Muto, Naoshi Odagiri, Hiroyuki Motoyama et al. "Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease". Nutrients 15, n.º 5 (26 de fevereiro de 2023): 1175. http://dx.doi.org/10.3390/nu15051175.
Texto completo da fonteCheng, Naixuan, Chang Liu, Yulin Li, Shijuan Gao, Ying-Chun Han, Xiaonan Wang, Jie Du e Congcong Zhang. "MicroRNA-223-3p promotes skeletal muscle regeneration by regulating inflammation in mice". Journal of Biological Chemistry 295, n.º 30 (3 de junho de 2020): 10212–23. http://dx.doi.org/10.1074/jbc.ra119.012263.
Texto completo da fonteHoward, Zachary M., Neha Rastogi, Jeovanna Lowe, J. Spencer Hauck, Pratham Ingale, Chetan Gomatam, Celso E. Gomez-Sanchez, Elise P. Gomez-Sanchez, Shyam S. Bansal e Jill A. Rafael-Fortney. "Myeloid mineralocorticoid receptors contribute to skeletal muscle repair in muscular dystrophy and acute muscle injury". American Journal of Physiology-Cell Physiology 322, n.º 3 (1 de março de 2022): C354—C369. http://dx.doi.org/10.1152/ajpcell.00411.2021.
Texto completo da fonteBaltzer, Wendy Irene, David V. Calise, Jonathan M. Levine, G. D. Shelton, John F. Edwards e Joerg M. Steiner. "Dystrophin-Deficient Muscular Dystrophy in a Weimaraner". Journal of the American Animal Hospital Association 43, n.º 4 (1 de julho de 2007): 227–32. http://dx.doi.org/10.5326/0430227.
Texto completo da fonteIbrahim, Abdalla, Eoghan Meagher, Alexander Fraser e Thomas J. Kiernan. "A Young Male with Severe Myocarditis and Skeletal Muscle Myositis". Case Reports in Cardiology 2018 (14 de junho de 2018): 1–4. http://dx.doi.org/10.1155/2018/5698739.
Texto completo da fonteWang, Yanjie, Jianqiang Lu e Yujian Liu. "Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models". International Journal of Molecular Sciences 23, n.º 21 (2 de novembro de 2022): 13380. http://dx.doi.org/10.3390/ijms232113380.
Texto completo da fonteLaws, Nicola, Renée A. Cornford-Nairn, Nicole Irwin, Russell Johnsen, Susan Fletcher, Stephen D. Wilton e Andrew J. Hoey. "Long-term administration of antisense oligonucleotides into the paraspinal muscles of mdx mice reduces kyphosis". Journal of Applied Physiology 105, n.º 2 (agosto de 2008): 662–68. http://dx.doi.org/10.1152/japplphysiol.00068.2008.
Texto completo da fonteGardner, Tyler, Keith Kenter e Yong Li. "Fibrosis following Acute Skeletal Muscle Injury: Mitigation and Reversal Potential in the Clinic". Journal of Sports Medicine 2020 (1 de setembro de 2020): 1–7. http://dx.doi.org/10.1155/2020/7059057.
Texto completo da fonteLevine, Joshua M., Robert A. Taylor, Lauren B. Elman, Shawn J. Bird, Ehud Lavi, Ethan D. Stolzenberg, Michael L. McGarvey, Arthur K. Asbury e Sergio A. Jimenez. "Involvement of skeletal muscle in dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy)". Muscle & Nerve 30, n.º 5 (19 de outubro de 2004): 569–77. http://dx.doi.org/10.1002/mus.20153.
Texto completo da fonteUrso, Maria L. "Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment?" Journal of Applied Physiology 115, n.º 6 (15 de setembro de 2013): 920–28. http://dx.doi.org/10.1152/japplphysiol.00036.2013.
Texto completo da fonteTakahashi, Yuya, Tatsunori Shimizu, Shunsuke Kato, Mitsuhiko Nara, Yumi Suganuma, Takehiro Sato, Tsukasa Morii, Yuichiro Yamada e Hiroki Fujita. "Reduction of Superoxide Dismutase 1 Delays Regeneration of Cardiotoxin-Injured Skeletal Muscle in KK/Ta-Ins2Akita Mice with Progressive Diabetic Nephropathy". International Journal of Molecular Sciences 22, n.º 11 (23 de maio de 2021): 5491. http://dx.doi.org/10.3390/ijms22115491.
Texto completo da fonteSu, Wen-Hong, Ching-Jen Wang, Hung-Chun Fu, Chien-Ming Sheng, Ching-Chin Tsai, Jai-Hong Cheng e Pei-Chin Chuang. "Human Umbilical Cord Mesenchymal Stem Cells Extricate Bupivacaine-Impaired Skeletal Muscle Function via Mitigating Neutrophil-Mediated Acute Inflammation and Protecting against Fibrosis". International Journal of Molecular Sciences 20, n.º 17 (3 de setembro de 2019): 4312. http://dx.doi.org/10.3390/ijms20174312.
Texto completo da fonte