Literatura científica selecionada sobre o tema "Sparse Reward"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Sparse Reward".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Sparse Reward"
Kong, Yan, Junfeng Wei, and Chih-Hsien Hsia. "Solving Sparse Reward Tasks Using Self-Balancing Exploration and Exploitation." Journal of Internet Technology 26, no. 3 (2025): 293–301. https://doi.org/10.70003/160792642025052603002.
Texto completo da fontePark, Junseok, Yoonsung Kim, Hee bin Yoo, et al. "Unveiling the Significance of Toddler-Inspired Reward Transition in Goal-Oriented Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (2024): 592–600. http://dx.doi.org/10.1609/aaai.v38i1.27815.
Texto completo da fonteXu, Pei, Junge Zhang, Qiyue Yin, Chao Yu, Yaodong Yang, and Kaiqi Huang. "Subspace-Aware Exploration for Sparse-Reward Multi-Agent Tasks." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 11717–25. http://dx.doi.org/10.1609/aaai.v37i10.26384.
Texto completo da fonteMguni, David, Taher Jafferjee, Jianhong Wang, et al. "Learning to Shape Rewards Using a Game of Two Partners." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 11604–12. http://dx.doi.org/10.1609/aaai.v37i10.26371.
Texto completo da fonteMeng, Fanxiao. "Research on Multi-agent Sparse Reward Problem." Highlights in Science, Engineering and Technology 85 (March 13, 2024): 96–103. http://dx.doi.org/10.54097/er0mx710.
Texto completo da fonteZuo, Guoyu, Qishen Zhao, Jiahao Lu, and Jiangeng Li. "Efficient hindsight reinforcement learning using demonstrations for robotic tasks with sparse rewards." International Journal of Advanced Robotic Systems 17, no. 1 (2020): 172988141989834. http://dx.doi.org/10.1177/1729881419898342.
Texto completo da fonteVelasquez, Alvaro, Brett Bissey, Lior Barak, et al. "Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (2021): 12015–23. http://dx.doi.org/10.1609/aaai.v35i13.17427.
Texto completo da fonteCorazza, Jan, Ivan Gavran, and Daniel Neider. "Reinforcement Learning with Stochastic Reward Machines." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6429–36. http://dx.doi.org/10.1609/aaai.v36i6.20594.
Texto completo da fonteGaina, Raluca D., Simon M. Lucas, and Diego Pérez-Liébana. "Tackling Sparse Rewards in Real-Time Games with Statistical Forward Planning Methods." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1691–98. http://dx.doi.org/10.1609/aaai.v33i01.33011691.
Texto completo da fonteZhou, Xiao, Song Zhou, Xingang Mou, and Yi He. "Multirobot Collaborative Pursuit Target Robot by Improved MADDPG." Computational Intelligence and Neuroscience 2022 (February 25, 2022): 1–10. http://dx.doi.org/10.1155/2022/4757394.
Texto completo da fonteTeses / dissertações sobre o assunto "Sparse Reward"
Hanski, Jari, and Kaan Baris Biçak. "An Evaluation of the Unity Machine Learning Agents Toolkit in Dense and Sparse Reward Video Game Environments." Thesis, Uppsala universitet, Institutionen för speldesign, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444982.
Texto completo da fonteCastanet, Nicolas. "Automatic state representation and goal selection in unsupervised reinforcement learning." Electronic Thesis or Diss., Sorbonne université, 2025. http://www.theses.fr/2025SORUS005.
Texto completo da fontePaolo, Giuseppe. "Learning in Sparse Rewards setting through Quality Diversity algorithms." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS400.
Texto completo da fonteBeretta, Davide. "Experience Replay in Sparse Rewards Problems using Deep Reinforcement Techniques." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17531/.
Texto completo da fonteParisi, Simone [Verfasser], Jan [Akademischer Betreuer] Peters, and Joschka [Akademischer Betreuer] Boedeker. "Reinforcement Learning with Sparse and Multiple Rewards / Simone Parisi ; Jan Peters, Joschka Boedeker." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/1203301545/34.
Texto completo da fonteBenini, Francesco. "Predicting death in games with deep reinforcement learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20755/.
Texto completo da fonteGallouedec, Quentin. "Toward the generalization of reinforcement learning." Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0013.
Texto completo da fonteJunyent, Barbany Miquel. "Width-Based Planning and Learning." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/672779.
Texto completo da fonteParisi, Simone. "Reinforcement Learning with Sparse and Multiple Rewards." Phd thesis, 2020. https://tuprints.ulb.tu-darmstadt.de/11372/1/THESIS.PDF.
Texto completo da fonteChi, Lu-cheng, and 紀律呈. "An Improved Deep Reinforcement Learning with Sparse Rewards." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/eq94pr.
Texto completo da fonteLivros sobre o assunto "Sparse Reward"
Rudyard, Kipling. Puck of Pook's Hill ; and, Rewards and fairies. Oxford University Press, 1992.
Encontre o texto completo da fontePersson, Fabian. Women at the Early Modern Swedish Court. Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463725200.
Texto completo da fontePrima. Official Sega Genesis: Power Tips Book. Prima Publishing, 1992.
Encontre o texto completo da fonteMcdermott, Leeanne. GamePro Presents: Sega Genesis Games Secrets: Greatest Tips. Prima Publishing, 1992.
Encontre o texto completo da fonteSandler, Corey. Official Sega Genesis and Game Gear strategies, 3RD Edition. Bantam Books, 1992.
Encontre o texto completo da fonteRudyard, Kipling. Rewards and Fairies. Createspace Independent Publishing Platform, 2016.
Encontre o texto completo da fonteRudyard, Kipling. Rewards and Fairies. Independently Published, 2021.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Sparse Reward"
Hensel, Maximilian. "Exploration Methods in Sparse Reward Environments." In Reinforcement Learning Algorithms: Analysis and Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-41188-6_4.
Texto completo da fonteMoy, Glennn, and Slava Shekh. "Evolution Strategies for Sparse Reward Gridworld Environments." In AI 2022: Advances in Artificial Intelligence. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22695-3_19.
Texto completo da fonteJeewa, Asad, Anban W. Pillay, and Edgar Jembere. "Learning to Generalise in Sparse Reward Navigation Environments." In Artificial Intelligence Research. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66151-9_6.
Texto completo da fonteChen, Zhongpeng, and Qiang Guan. "Continuous Exploration via Multiple Perspectives in Sparse Reward Environment." In Pattern Recognition and Computer Vision. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8435-0_5.
Texto completo da fonteLei, Hejun, Paul Weng, Juan Rojas, and Yisheng Guan. "Planning with Q-Values in Sparse Reward Reinforcement Learning." In Intelligent Robotics and Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13844-7_56.
Texto completo da fonteFu, Yupeng, Yuan Xiao, Jun Fang, Xiangyang Deng, Ziqiang Zhu, and Limin Zhang. "Distributed Advantage-Based Weights Reshaping Algorithm with Sparse Reward." In Lecture Notes in Computer Science. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-7181-3_31.
Texto completo da fonteLe, Bang-Giang, Thi-Linh Hoang, Hai-Dang Kieu, and Viet-Cuong Ta. "Structural and Compact Latent Representation Learning on Sparse Reward Environments." In Intelligent Information and Database Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5837-5_4.
Texto completo da fonteWu, Feng, and Xiaoping Chen. "Solving Large-Scale and Sparse-Reward DEC-POMDPs with Correlation-MDPs." In RoboCup 2007: Robot Soccer World Cup XI. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68847-1_18.
Texto completo da fonteMizukami, Naoki, Jun Suzuki, Hirotaka Kameko, and Yoshimasa Tsuruoka. "Exploration Bonuses Based on Upper Confidence Bounds for Sparse Reward Games." In Lecture Notes in Computer Science. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71649-7_14.
Texto completo da fonteKang, Yongxin, Enmin Zhao, Yifan Zang, Kai Li, and Junliang Xing. "Towards a Unified Benchmark for Reinforcement Learning in Sparse Reward Environments." In Communications in Computer and Information Science. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1639-9_16.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Sparse Reward"
Hossain, Jumman, Abu-Zaher Faridee, Nirmalya Roy, Jade Freeman, Timothy Gregory, and Theron Trout. "TopoNav: Topological Navigation for Efficient Exploration in Sparse Reward Environments." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802380.
Texto completo da fonteHuang, Chao, Yibei Guo, Zhihui Zhu, Mei Si, Daniel Blankenberg, and Rui Liu. "Quantum Exploration-based Reinforcement Learning for Efficient Robot Path Planning in Sparse-Reward Environment." In 2024 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN). IEEE, 2024. http://dx.doi.org/10.1109/ro-man60168.2024.10731199.
Texto completo da fonteYang, Kai, Zhirui Fang, Xiu Li, and Jian Tao. "CMBE: Curiosity-driven Model-Based Exploration for Multi-Agent Reinforcement Learning in Sparse Reward Settings." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650769.
Texto completo da fonteFarkaš, Igor. "Explaining Internal Representations in Deep Networks: Adversarial Vulnerability of Image Classifiers and Learning Sequential Tasks with Sparse Reward." In 2025 IEEE 23rd World Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE, 2025. https://doi.org/10.1109/sami63904.2025.10883317.
Texto completo da fonteXi, Lele, Hongkun Wang, Zhijie Li, and Changchun Hua. "An Experience Replay Approach Based on SSIM to Solve the Sparse Reward Problem in Pursuit Evasion Game*." In 2024 China Automation Congress (CAC). IEEE, 2024. https://doi.org/10.1109/cac63892.2024.10864615.
Texto completo da fonteWang, Guojian, Faguo Wu, and Xiao Zhang. "Trajectory-Oriented Policy Optimization with Sparse Rewards." In 2024 2nd International Conference on Intelligent Perception and Computer Vision (CIPCV). IEEE, 2024. http://dx.doi.org/10.1109/cipcv61763.2024.00023.
Texto completo da fonteCheng, Hao, Jiahang Cao, Erjia Xiao, Mengshu Sun, and Renjing Xu. "Gaining the Sparse Rewards by Exploring Lottery Tickets in Spiking Neural Networks." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802854.
Texto completo da fonteHuang, Yuming, Bin Ren, Ziming Xu, and Lianghong Wu. "MRHER: Model-based Relay Hindsight Experience Replay for Sequential Object Manipulation Tasks with Sparse Rewards." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650959.
Texto completo da fonteMadnani, Mayur. "Enhancing AWS DeepRacer Performance: A Study on Reward Functions, Action Spaces, and Hyperparameter Tuning." In 2024 17th International Conference on Development in eSystem Engineering (DeSE). IEEE, 2024. https://doi.org/10.1109/dese63988.2024.10911895.
Texto completo da fonteTian, Yuhe, Ayooluwa Akintola, Yazhou Jiang, et al. "Reinforcement Learning-Driven Process Design: A Hydrodealkylation Example." In Foundations of Computer-Aided Process Design. PSE Press, 2024. http://dx.doi.org/10.69997/sct.119603.
Texto completo da fonteRelatórios de organizações sobre o assunto "Sparse Reward"
Erik Lyngdorf, Niels, Selina Thelin Ruggaard, Kathrin Otrel-Cass, and Eamon Costello. The Hacking Innovative Pedagogies (HIP) framework: - Rewilding the digital learning ecology. Aalborg University, 2023. http://dx.doi.org/10.54337/aau602808725.
Texto completo da fonteMurray, Chris, Keith Williams, Norrie Millar, Monty Nero, Amy O'Brien, and Damon Herd. A New Palingenesis. University of Dundee, 2022. http://dx.doi.org/10.20933/100001273.
Texto completo da fonte