Artigos de revistas sobre o tema "Sparse Reward"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Sparse Reward".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kong, Yan, Junfeng Wei, and Chih-Hsien Hsia. "Solving Sparse Reward Tasks Using Self-Balancing Exploration and Exploitation." Journal of Internet Technology 26, no. 3 (2025): 293–301. https://doi.org/10.70003/160792642025052603002.
Texto completo da fontePark, Junseok, Yoonsung Kim, Hee bin Yoo, et al. "Unveiling the Significance of Toddler-Inspired Reward Transition in Goal-Oriented Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (2024): 592–600. http://dx.doi.org/10.1609/aaai.v38i1.27815.
Texto completo da fonteXu, Pei, Junge Zhang, Qiyue Yin, Chao Yu, Yaodong Yang, and Kaiqi Huang. "Subspace-Aware Exploration for Sparse-Reward Multi-Agent Tasks." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 11717–25. http://dx.doi.org/10.1609/aaai.v37i10.26384.
Texto completo da fonteMguni, David, Taher Jafferjee, Jianhong Wang, et al. "Learning to Shape Rewards Using a Game of Two Partners." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 11604–12. http://dx.doi.org/10.1609/aaai.v37i10.26371.
Texto completo da fonteMeng, Fanxiao. "Research on Multi-agent Sparse Reward Problem." Highlights in Science, Engineering and Technology 85 (March 13, 2024): 96–103. http://dx.doi.org/10.54097/er0mx710.
Texto completo da fonteZuo, Guoyu, Qishen Zhao, Jiahao Lu, and Jiangeng Li. "Efficient hindsight reinforcement learning using demonstrations for robotic tasks with sparse rewards." International Journal of Advanced Robotic Systems 17, no. 1 (2020): 172988141989834. http://dx.doi.org/10.1177/1729881419898342.
Texto completo da fonteVelasquez, Alvaro, Brett Bissey, Lior Barak, et al. "Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (2021): 12015–23. http://dx.doi.org/10.1609/aaai.v35i13.17427.
Texto completo da fonteCorazza, Jan, Ivan Gavran, and Daniel Neider. "Reinforcement Learning with Stochastic Reward Machines." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6429–36. http://dx.doi.org/10.1609/aaai.v36i6.20594.
Texto completo da fonteGaina, Raluca D., Simon M. Lucas, and Diego Pérez-Liébana. "Tackling Sparse Rewards in Real-Time Games with Statistical Forward Planning Methods." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1691–98. http://dx.doi.org/10.1609/aaai.v33i01.33011691.
Texto completo da fonteZhou, Xiao, Song Zhou, Xingang Mou, and Yi He. "Multirobot Collaborative Pursuit Target Robot by Improved MADDPG." Computational Intelligence and Neuroscience 2022 (February 25, 2022): 1–10. http://dx.doi.org/10.1155/2022/4757394.
Texto completo da fonteJiang, Jiechuan, and Zongqing Lu. "Generative Exploration and Exploitation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4337–44. http://dx.doi.org/10.1609/aaai.v34i04.5858.
Texto completo da fonteYan Kong, Yan Kong, Yefeng Rui Yan Kong, and Chih-Hsien Hsia Yefeng Rui. "A Deep Reinforcement Learning-Based Approach in Porker Game." 電腦學刊 34, no. 2 (2023): 041–51. http://dx.doi.org/10.53106/199115992023043402004.
Texto completo da fonteDann, Michael, Fabio Zambetta, and John Thangarajah. "Deriving Subgoals Autonomously to Accelerate Learning in Sparse Reward Domains." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 881–89. http://dx.doi.org/10.1609/aaai.v33i01.3301881.
Texto completo da fonteBougie, Nicolas, and Ryutaro Ichise. "Skill-based curiosity for intrinsically motivated reinforcement learning." Machine Learning 109, no. 3 (2019): 493–512. http://dx.doi.org/10.1007/s10994-019-05845-8.
Texto completo da fonteCatacora Ocana, Jim Martin, Roberto Capobianco, and Daniele Nardi. "An Overview of Environmental Features that Impact Deep Reinforcement Learning in Sparse-Reward Domains." Journal of Artificial Intelligence Research 76 (April 26, 2023): 1181–218. http://dx.doi.org/10.1613/jair.1.14390.
Texto completo da fonteZhu, Yiwen, Yuan Zheng, Wenya Wei, and Zhou Fang. "Enhancing Automated Maneuvering Decisions in UCAV Air Combat Games Using Homotopy-Based Reinforcement Learning." Drones 8, no. 12 (2024): 756. https://doi.org/10.3390/drones8120756.
Texto completo da fonteGehring, Clement, Masataro Asai, Rohan Chitnis, et al. "Reinforcement Learning for Classical Planning: Viewing Heuristics as Dense Reward Generators." Proceedings of the International Conference on Automated Planning and Scheduling 32 (June 13, 2022): 588–96. http://dx.doi.org/10.1609/icaps.v32i1.19846.
Texto completo da fonteXu, Zhe, Ivan Gavran, Yousef Ahmad, et al. "Joint Inference of Reward Machines and Policies for Reinforcement Learning." Proceedings of the International Conference on Automated Planning and Scheduling 30 (June 1, 2020): 590–98. http://dx.doi.org/10.1609/icaps.v30i1.6756.
Texto completo da fonteYe, Chenhao, Wei Zhu, Shiluo Guo, and Jinyin Bai. "DQN-Based Shaped Reward Function Mold for UAV Emergency Communication." Applied Sciences 14, no. 22 (2024): 10496. http://dx.doi.org/10.3390/app142210496.
Texto completo da fonteQu, Yun, Yuhang Jiang, Boyuan Wang, et al. "Latent Reward: LLM-Empowered Credit Assignment in Episodic Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 20095–103. https://doi.org/10.1609/aaai.v39i19.34213.
Texto completo da fonteDharmavaram, Akshay, Matthew Riemer, and Shalabh Bhatnagar. "Hierarchical Average Reward Policy Gradient Algorithms (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13777–78. http://dx.doi.org/10.1609/aaai.v34i10.7160.
Texto completo da fonteAbu Bakar, Mohamad Hafiz, Abu Ubaidah Shamsudin, Zubair Adil Soomro, Satoshi Tadokoro, and C. J. Salaan. "FUSION SPARSE AND SHAPING REWARD FUNCTION IN SOFT ACTOR-CRITIC DEEP REINFORCEMENT LEARNING FOR MOBILE ROBOT NAVIGATION." Jurnal Teknologi 86, no. 2 (2024): 37–49. http://dx.doi.org/10.11113/jurnalteknologi.v86.20147.
Texto completo da fonteSharip, Zati, Mohd Hafiz Zulkifli, Mohd Nur Farhan Abd Wahab, Zubaidi Johar, and Mohd Zaki Mat Amin. "ASSESSING TROPHIC STATE AND WATER QUALITY OF SMALL LAKES AND PONDS IN PERAK." Jurnal Teknologi 86, no. 2 (2024): 51–59. http://dx.doi.org/10.11113/jurnalteknologi.v86.20566.
Texto completo da fonteParisi, Simone, Davide Tateo, Maximilian Hensel, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. "Long-Term Visitation Value for Deep Exploration in Sparse-Reward Reinforcement Learning." Algorithms 15, no. 3 (2022): 81. http://dx.doi.org/10.3390/a15030081.
Texto completo da fonteForbes, Grant C., and David L. Roberts. "Potential-Based Reward Shaping for Intrinsic Motivation (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 21 (2024): 23488–89. http://dx.doi.org/10.1609/aaai.v38i21.30441.
Texto completo da fonteLin, Qi, Hengtong Lu, Caixia Yuan, Xiaojie Wang, Huixing Jiang, and Wei Chen. "Data with High and Consistent Preference Difference Are Better for Reward Model." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 26 (2025): 27482–90. https://doi.org/10.1609/aaai.v39i26.34960.
Texto completo da fonteGuo, Yijie, Qiucheng Wu, and Honglak Lee. "Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6792–800. http://dx.doi.org/10.1609/aaai.v36i6.20635.
Texto completo da fontePhan, Bui Khoi, Truong Giang Nguyen, and Van Tan Hoang. "Control and Simulation of a 6-DOF Biped Robot based on Twin Delayed Deep Deterministic Policy Gradient Algorithm." Indian Journal of Science and Technology 14, no. 30 (2021): 2460–71. https://doi.org/10.17485/IJST/v14i30.1030.
Texto completo da fonteBooth, Serena, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi. "The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 5 (2023): 5920–29. http://dx.doi.org/10.1609/aaai.v37i5.25733.
Texto completo da fonteLinke, Cam, Nadia M. Ady, Martha White, Thomas Degris, and Adam White. "Adapting Behavior via Intrinsic Reward: A Survey and Empirical Study." Journal of Artificial Intelligence Research 69 (December 14, 2020): 1287–332. http://dx.doi.org/10.1613/jair.1.12087.
Texto completo da fonteVelasquez, Alvaro, Brett Bissey, Lior Barak, et al. "Multi-Agent Tree Search with Dynamic Reward Shaping." Proceedings of the International Conference on Automated Planning and Scheduling 32 (June 13, 2022): 652–61. http://dx.doi.org/10.1609/icaps.v32i1.19854.
Texto completo da fonteSorg, Jonathan, Satinder Singh, and Richard Lewis. "Optimal Rewards versus Leaf-Evaluation Heuristics in Planning Agents." Proceedings of the AAAI Conference on Artificial Intelligence 25, no. 1 (2011): 465–70. http://dx.doi.org/10.1609/aaai.v25i1.7931.
Texto completo da fonteYin, Haiyan, Jianda Chen, Sinno Jialin Pan, and Sebastian Tschiatschek. "Sequential Generative Exploration Model for Partially Observable Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10700–10708. http://dx.doi.org/10.1609/aaai.v35i12.17279.
Texto completo da fonteHasanbeig, Mohammadhosein, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and Daniel Kroening. "DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7647–56. http://dx.doi.org/10.1609/aaai.v35i9.16935.
Texto completo da fonteHasanbeig, Hosein, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and Daniel Kroening. "Symbolic Task Inference in Deep Reinforcement Learning." Journal of Artificial Intelligence Research 80 (July 23, 2024): 1099–137. http://dx.doi.org/10.1613/jair.1.14063.
Texto completo da fonteJiang, Nan, Sheng Jin, and Changshui Zhang. "Hierarchical automatic curriculum learning: Converting a sparse reward navigation task into dense reward." Neurocomputing 360 (September 2019): 265–78. http://dx.doi.org/10.1016/j.neucom.2019.06.024.
Texto completo da fonteJin, Tianyuan, Hao-Lun Hsu, William Chang, and Pan Xu. "Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 11 (2024): 12956–64. http://dx.doi.org/10.1609/aaai.v38i11.29193.
Texto completo da fonteMa, Ang, Yanhua Yu, Chuan Shi, Shuai Zhen, Liang Pang, and Tat-Seng Chua. "PMHR: Path-Based Multi-Hop Reasoning Incorporating Rule-Enhanced Reinforcement Learning and KG Embeddings." Electronics 13, no. 23 (2024): 4847. https://doi.org/10.3390/electronics13234847.
Texto completo da fonteWei, Tianqi, Qinghai Guo, and Barbara Webb. "Learning with sparse reward in a gap junction network inspired by the insect mushroom body." PLOS Computational Biology 20, no. 5 (2024): e1012086. http://dx.doi.org/10.1371/journal.pcbi.1012086.
Texto completo da fonteKang, Yongxin, Enmin Zhao, Kai Li, and Junliang Xing. "Exploration via State influence Modeling." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8047–54. http://dx.doi.org/10.1609/aaai.v35i9.16981.
Texto completo da fonteAdamczyk, Jacob, Volodymyr Makarenko, Stas Tiomkin, and Rahul V. Kulkarni. "Bootstrapped Reward Shaping." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 15 (2025): 15302–10. https://doi.org/10.1609/aaai.v39i15.33679.
Texto completo da fonteSakamoto, Yuma, and Kentarou Kurashige. "Self-Generating Evaluations for Robot’s Autonomy Based on Sensor Input." Machines 11, no. 9 (2023): 892. http://dx.doi.org/10.3390/machines11090892.
Texto completo da fonteMorrison, Sara E., Vincent B. McGinty, Johann du Hoffmann, and Saleem M. Nicola. "Limbic-motor integration by neural excitations and inhibitions in the nucleus accumbens." Journal of Neurophysiology 118, no. 5 (2017): 2549–67. http://dx.doi.org/10.1152/jn.00465.2017.
Texto completo da fonteHan, Ziyao, Fan Yi, and Kazuhiro Ohkura. "Collective Transport Behavior in a Robotic Swarm with Hierarchical Imitation Learning." Journal of Robotics and Mechatronics 36, no. 3 (2024): 538–45. http://dx.doi.org/10.20965/jrm.2024.p0538.
Texto completo da fonteSong, Qingpeng, Yuansheng Liu, Ming Lu, et al. "Autonomous Driving Decision Control Based on Improved Proximal Policy Optimization Algorithm." Applied Sciences 13, no. 11 (2023): 6400. http://dx.doi.org/10.3390/app13116400.
Texto completo da fonteTang, Wanxing, Chuang Cheng, Haiping Ai, and Li Chen. "Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment." Micromachines 13, no. 4 (2022): 564. http://dx.doi.org/10.3390/mi13040564.
Texto completo da fonteXu, Xibao, Yushen Chen, and Chengchao Bai. "Deep Reinforcement Learning-Based Accurate Control of Planetary Soft Landing." Sensors 21, no. 23 (2021): 8161. http://dx.doi.org/10.3390/s21238161.
Texto completo da fontePotjans, Wiebke, Abigail Morrison, and Markus Diesmann. "A Spiking Neural Network Model of an Actor-Critic Learning Agent." Neural Computation 21, no. 2 (2009): 301–39. http://dx.doi.org/10.1162/neco.2008.08-07-593.
Texto completo da fonteKim, MyeongSeop, and Jung-Su Kim. "Policy-based Deep Reinforcement Learning for Sparse Reward Environment." Transactions of The Korean Institute of Electrical Engineers 70, no. 3 (2021): 506–14. http://dx.doi.org/10.5370/kiee.2021.70.3.506.
Texto completo da fonteAkgün, Onur, and N. Kemal Üre. "Bayesian curriculum generation in sparse reward reinforcement learning environments." Engineering Science and Technology, an International Journal 66 (June 2025): 102048. https://doi.org/10.1016/j.jestch.2025.102048.
Texto completo da fonte