Artigos de revistas sobre o tema "Spent catalyst characterization"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Spent catalyst characterization".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yunes, Simón, Jeffrey Kenvin, and Antonio Gil. "On the Application of an In Situ Catalyst Characterization System (ICCS) and a Mass Spectrometer Detector as Powerful Techniques for the Characterization of Catalysts." Physchem 3, no. 2 (2023): 220–31. http://dx.doi.org/10.3390/physchem3020015.
Texto completo da fonteYunes, Simon, Urim Pearl Kim, Hoang Nguyen, and Jeffrey Kenvin. "Exploiting In-Situ Characterization for a Sabatier Reaction to Reveal Catalytic Details." Chemistry 3, no. 4 (2021): 1157–65. http://dx.doi.org/10.3390/chemistry3040084.
Texto completo da fonteNagar, Neha, Himanshi Garg, and Chandra Sekhar Gahan. "Characterization of different types of petroleum refinery spent catalyst followed by microbial mediated leaching of metal values." Chemical Reports 3, no. 1 (2021): 177–87. http://dx.doi.org/10.25082/cr.2021.01.002.
Texto completo da fonteSaputra, Edy, Panca Setia Utama, Irdoni HS, et al. "Spent Bleaching Earth Supported CeFeO3 Perovskite for Visible Light Photocatalytic Oxidation of Methylene Blue." Journal of Applied Materials and Technology 1, no. 2 (2020): 81–87. http://dx.doi.org/10.31258/jamt.1.2.81-87.
Texto completo da fonteTsavatopoulou, Vasiliki D., Andriana F. Aravantinou, John Vakros, and Ioannis D. Manariotis. "Conversion of Scenedesmus rubescens Lipid into Biodiesel by Biochar of Different Origin." Catalysts 11, no. 9 (2021): 1116. http://dx.doi.org/10.3390/catal11091116.
Texto completo da fonteKliewer, C. E., M. M. Disko, S. L. Soled, and G. J. DeMartin. "A Reactor for “Ex-Situ” TEM Catalyst Characterization." Microscopy and Microanalysis 5, S2 (1999): 926–27. http://dx.doi.org/10.1017/s1431927600017955.
Texto completo da fonteYong, Xiaojing, Hui Su, Nana Zhao, Zhengwei Jin, Min Yao, and Yulong Ma. "Xylene and n-Hexane Adsorption Performance of a Waste Methanol-to-Propylene Catalyst under Acid-Base Treatment." Catalysts 12, no. 9 (2022): 1028. http://dx.doi.org/10.3390/catal12091028.
Texto completo da fonteEsla, Jaggu D., Abdulsalami S. Kovo, Zakariyah Abdullahi Abiodun, and Kamaldeen Olayinka Suleiman. "Thermal and Structural Characterization of Coke Deposition on Spent NiMo Catalyst Used During Catalytic Upgrading of Heavy Oil." Journal of Engineering Research and Reports 26, no. 12 (2024): 11–23. http://dx.doi.org/10.9734/jerr/2024/v26i121336.
Texto completo da fonteStellato, Michael J., Giada Innocenti, Andreas S. Bommarius, and Carsten Sievers. "Pore Blocking by Phenolates as Deactivation Path during the Cracking of 4-Propylphenol over ZSM-5." Catalysts 11, no. 6 (2021): 721. http://dx.doi.org/10.3390/catal11060721.
Texto completo da fonteAlharbi, Walaa, Khadijah H. Alharbi, L. Selva Roselin, R. Savidha, and Rosilda Selvin. "Nanosized Silica-Supported 12-Tungstophosphoric Acid: A Highly Active and Stable Catalyst for the Alkylation of p-Cresol with tert-Butanol." Catalysts 13, no. 11 (2023): 1432. http://dx.doi.org/10.3390/catal13111432.
Texto completo da fonteAl-Doghachi, Faris A. J., Ali F. A. Jassim, and Yun Hin Taufiq-Yap. "Enhancement of CO2 Reforming of CH4 Reaction Using Ni,Pd,Pt/Mg1−xCex4+O and Ni/Mg1−xCex4+O Catalysts." Catalysts 10, no. 11 (2020): 1240. http://dx.doi.org/10.3390/catal10111240.
Texto completo da fonteFakeeha, Anis H., Ahmed A. Ibrahim, Ahmed I. Osman, et al. "Advancements in Methane Dry Reforming: Investigating Nickel–Zeolite Catalysts Enhanced by Promoter Integration." Processes 12, no. 9 (2024): 1826. http://dx.doi.org/10.3390/pr12091826.
Texto completo da fonteChen, Xiaopeng, Lu Ren, Muhammad Yaseen, et al. "Synthesis, characterization and activity performance of nickel-loaded spent FCC catalyst for pine gum hydrogenation." RSC Advances 9, no. 12 (2019): 6515–25. http://dx.doi.org/10.1039/c8ra07943a.
Texto completo da fonteZhang, Tao, Shi Jie Zhou, Qiang Wei, Ting Ting Liu, Wen Wu Zhou, and Ya Song Zhou. "Comparative Study on Hydrotreating of Venezuela De-Asphalted Oil: Conversion Behavior of Heteroatom Compounds and HDM Catalyst Deactivation." Advanced Materials Research 926-930 (May 2014): 320–24. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.320.
Texto completo da fonteQu, Wen Wen, Wen Jin, Jin Hui Peng, and Shu Yang. "Structural Characterization of ZnO/AC Composite Prepared from Spent Catalyst of Vinyl Acetate Synthesis." Advanced Materials Research 518-523 (May 2012): 3483–87. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.3483.
Texto completo da fonteWang, Guangjian, Kai Lu, Chaoqun Yin та ін. "One-Step Fabrication of PtSn/γ-Al2O3 Catalysts with La Post-Modification for Propane Dehydrogenation". Catalysts 10, № 9 (2020): 1042. http://dx.doi.org/10.3390/catal10091042.
Texto completo da fonteZakariyaou, Seybou Yacouba, Hua Ye, Abdoulaye Dan Makaou Oumarou, Mamane Souley Abdoul Aziz, and Shixian Ke. "Characterization of Equilibrium Catalysts from the Fluid Catalytic Cracking Process of Atmospheric Residue." Catalysts 13, no. 12 (2023): 1483. http://dx.doi.org/10.3390/catal13121483.
Texto completo da fonteXiao, Yan, Jie Li, Yuan Tan, et al. "Ni-Based Hydrotalcite (HT)-Derived Cu Catalysts for Catalytic Conversion of Bioethanol to Butanol." International Journal of Molecular Sciences 24, no. 19 (2023): 14859. http://dx.doi.org/10.3390/ijms241914859.
Texto completo da fonteZhang, Guoqiang, Jinyu Qin, Yuan Zhou, Huayan Zheng, and Fanhui Meng. "Catalytic Performance for CO Methanation over Ni/MCM-41 Catalyst in a Slurry-Bed Reactor." Catalysts 13, no. 3 (2023): 598. http://dx.doi.org/10.3390/catal13030598.
Texto completo da fonteMohamed, L. K., S. A. Shaban, and F. Y. El-Kady. "Effect of Calcination Temperature on the Characterization of Spent Catalyst." Petroleum Science and Technology 28, no. 3 (2010): 322–30. http://dx.doi.org/10.1080/10916460903058103.
Texto completo da fonteDash, Barsha, Indra Narayan Bhattacharya, Bhaskara Venkata Ramanamurthy, and Raja Kishore Paramguru. "Preparation and characterization of molybdenum trioxide from spent hydrodesulfurization catalyst." Korean Journal of Chemical Engineering 28, no. 7 (2011): 1546–49. http://dx.doi.org/10.1007/s11814-011-0005-9.
Texto completo da fonteKhan, Wasim Ullah, Mohammad Rizwan Khan, Rosa Busquets, and Naushad Ahmad. "Contribution of Oxide Supports in Nickel-Based Catalytic Elimination of Greenhouse Gases and Generation of Syngas." Energies 14, no. 21 (2021): 7324. http://dx.doi.org/10.3390/en14217324.
Texto completo da fonteSophiana, Intan Clarissa, Ferry Iskandar, Hary Devianto, Norikazu Nishiyama, and Yogi Wibisono Budhi. "Coke-Resistant Ni/CeZrO2 Catalysts for Dry Reforming of Methane to Produce Hydrogen-Rich Syngas." Nanomaterials 12, no. 9 (2022): 1556. http://dx.doi.org/10.3390/nano12091556.
Texto completo da fonteLoe, Ryan, Kelsey Huff, Morgan Walli, et al. "Effect of Pt Promotion on the Ni-Catalyzed Deoxygenation of Tristearin to Fuel-Like Hydrocarbons." Catalysts 9, no. 2 (2019): 200. http://dx.doi.org/10.3390/catal9020200.
Texto completo da fonteRANA, M., J. ANCHEYTA, S. MAITY, and P. RAYO. "Heavy crude oil hydroprocessing: A zeolite-based CoMo catalyst and its spent catalyst characterization." Catalysis Today 130, no. 2-4 (2008): 411–20. http://dx.doi.org/10.1016/j.cattod.2007.10.106.
Texto completo da fonteFrontera, Patrizia, Anastasia Macario, Angela Malara, et al. "Trimetallic Ni-Based Catalysts over Gadolinia-Doped Ceria for Green Fuel Production." Catalysts 8, no. 10 (2018): 435. http://dx.doi.org/10.3390/catal8100435.
Texto completo da fonteHenni, Hayat, Rafik Benrabaa, Pascal Roussel, and Axel Löfberg. "Ni-Ag Catalysts for Hydrogen Production through Dry Reforming of Methane: Characterization and Performance Evaluation." Catalysts 14, no. 7 (2024): 400. http://dx.doi.org/10.3390/catal14070400.
Texto completo da fonteAl-Iessa, Murtadha S., Bashir Y. Al-Zaidi, Riaydh S. Almukhtar, Zaidoon M. Shakor, and Ihsan Hamawand. "Optimization of Polypropylene Waste Recycling Products as Alternative Fuels through Non-Catalytic Thermal and Catalytic Hydrocracking Using Fresh and Spent Pt/Al2O3 and NiMo/Al2O3 Catalysts." Energies 16, no. 13 (2023): 4871. http://dx.doi.org/10.3390/en16134871.
Texto completo da fonteLiu, Jinbao, Ke Xia, and Fen Zhang. "Enhancing Propane Dehydrogenation Performance on Cerium-Modified PtSnIn/Al Trimetallic Catalysts." Catalysts 15, no. 5 (2025): 506. https://doi.org/10.3390/catal15050506.
Texto completo da fonteSokolova, Yu V., I. S. Belkina, and T. A. Sviridova. "Characterization of the spent industrial catalyst Co-Mo/Al2O3 for fine hydrotreatment of diesel fuel." Kataliz v promyshlennosti 19, no. 5 (2019): 375–81. http://dx.doi.org/10.18412/1816-0387-2019-5-375-381.
Texto completo da fonteA. Ibrahim, Ahmed, Ashraf Amin, Ahmed S. Al-Fatesh, et al. "Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4." Applied Sciences 9, no. 9 (2019): 1926. http://dx.doi.org/10.3390/app9091926.
Texto completo da fonteCruz-Ortiz, Brenda R., Lourdes Díaz-Jiménez, and Dora A. Cortés-Hernández. "Characterization and Biotechnological Clean-up Process of a TiO2 Spent Catalyst." International Journal of Environmental Science and Development 7, no. 7 (2016): 486–89. http://dx.doi.org/10.18178/ijesd.2016.7.7.825.
Texto completo da fonteSrour, Hawraa, Nadia Guignard, Mehrad Tarighi, et al. "Regeneration of an Aged Hydrodesulfurization Catalyst by Non-Thermal Plasma: Characterization of Refractory Coke Molecules." Catalysts 11, no. 10 (2021): 1153. http://dx.doi.org/10.3390/catal11101153.
Texto completo da fonteSajad, Mehran, Roman Bulánek, and Stanislav Šlang. "Physico-Chemical Changes in the KCl-MgCl2/La-FAU Composite Catalyst Induced by Oxidative Dehydrogenation of Ethane." Catalysts 11, no. 3 (2021): 392. http://dx.doi.org/10.3390/catal11030392.
Texto completo da fonteYang, Shuangxia, Yu Li, Lei Chen, et al. "Catalytic Steam-Reforming of Glycerol over LDHs-Derived Ni-Al Nanosheet Array Catalysts for Stable Hydrogen Production." Catalysts 13, no. 7 (2023): 1047. http://dx.doi.org/10.3390/catal13071047.
Texto completo da fontePala-Rosas, Israel, José Luis Contreras, José Salmones, et al. "Effects of the Acidic and Textural Properties of Y-Type Zeolites on the Synthesis of Pyridine and 3-Picoline from Acrolein and Ammonia." Catalysts 13, no. 4 (2023): 652. http://dx.doi.org/10.3390/catal13040652.
Texto completo da fonteAhmed, Hamid, Amal BaQais, Fekri Abdulraqeb Ahmed Ali, et al. "Revolutionizing Hydrogen Production: Unveiling the Role of Liquid Metals in Methane Pyrolysis over Iron Catalysts Supported on Titanium Dioxide and Alumina." Catalysts 15, no. 7 (2025): 631. https://doi.org/10.3390/catal15070631.
Texto completo da fonteIstadi, Istadi, Teguh Riyanto, Didi Dwi Anggoro, Cokorda Satrya Pramana, and Amalia Rizqi Ramadhani. "High Acidity and Low Carbon-Coke Formation Affinity of Co-Ni/ZSM-5 Catalyst for Renewable Liquid Fuels Production through Simultaneous Cracking-Deoxygenation of Palm Oil." Bulletin of Chemical Reaction Engineering & Catalysis 18, no. 2 (2023): 222–37. http://dx.doi.org/10.9767/bcrec.17974.
Texto completo da fonteMiao, Kai, Tan Li, Jing Su, Cong Wang, and Kaige Wang. "Mechanistic Insights into Hydrodeoxygenation of Acetone over Mo/HZSM-5 Bifunctional Catalyst for the Production of Hydrocarbons." Energies 15, no. 1 (2021): 53. http://dx.doi.org/10.3390/en15010053.
Texto completo da fonteCharry, Iran David, Lina María González, and Consuelo Montes de Correa. "Characterization by temperature programmed techniques of spent and acid treated vanadium catalysts." Revista Facultad de Ingeniería Universidad de Antioquia, no. 57 (February 28, 2013): 31–37. http://dx.doi.org/10.17533/udea.redin.14641.
Texto completo da fonteHuseynova, G. A., G. A. Gasimova, N. M. Aliyeva, and S. N. Osmanova. "Technological Features of Producing High-Index Oils in the Alkylation Process." Eurasian Chemico-Technological Journal 27, no. 2 (2025): 149–58. https://doi.org/10.18321/ectj1662.
Texto completo da fonteAbdulkarim Abdulrahman Mohamed Suliman, Ruzinah Isha, Mazrul Nizam Abu Seman, and Abdul Latif Ahmad. "Synthesis and characterization of TiO2 and palm oil fiber ash hybrid photocatalysts for seawater pretreatment." Maejo International Journal of Energy and Environmental Communication 2, no. 3 (2020): 11–20. http://dx.doi.org/10.54279/mijeec.v2i3.245035.
Texto completo da fonteWanta, Kevin Cleary, Felisha Hapsari Tanujaya, Federick Dwi Putra, et al. "SYNTHESIS AND CHARACTERIZATION OF NICKEL HYDROXIDE FROM EXTRACTION SOLUTION OF SPENT CATALYST." Metalurgi 35, no. 3 (2020): 111. http://dx.doi.org/10.14203/metalurgi.v35i3.572.
Texto completo da fontePATNAIK, Pinak, Avijit BISWAL, Bankim Chandra TRIPATHY, et al. "Synthesis and characterization of fibrous nickel hydroxide obtained from spent nickel catalyst." Transactions of Nonferrous Metals Society of China 23, no. 10 (2013): 2977–83. http://dx.doi.org/10.1016/s1003-6326(13)62823-x.
Texto completo da fonteZeuthen, Per, Barry H. Cooper, Fred T. Clark, and David Arters. "Characterization and Deactivation Studies of Spent Resid Catalyst from Ebullating Bed Service." Industrial & Engineering Chemistry Research 34, no. 3 (1995): 755–62. http://dx.doi.org/10.1021/ie00042a007.
Texto completo da fonteLei, Tianqi, Hongyao Guo, Changxi Miao, Weiming Hua, Yinghong Yue, and Zi Gao. "Mn-doped CeO2 Nanorod Supported Au Catalysts for Dehydrogenation of Ethane with CO2." Catalysts 9, no. 2 (2019): 119. http://dx.doi.org/10.3390/catal9020119.
Texto completo da fonteWidi Astuti, Mutia Dewi Yuniati, Aulia Pertiwi Tri Yuda, et al. "Nickel recovery from nickel-containing spent catalyst using atmospheric leaching and oxalate precipitation." Jurnal Rekayasa Proses 19, no. 1 (2025): 66–72. https://doi.org/10.22146/jrekpros.17589.
Texto completo da fonteZhang, Yuan, Hai Sheng Yan, Rui Huang, Quan Yin, Shu Jie Ren та Wei Chang Xu. "Regeneration of CuZnOx/γ-Al2O3 as a Heterogeneous Catalyst in CWPO Process". Advanced Materials Research 233-235 (травень 2011): 1437–41. http://dx.doi.org/10.4028/www.scientific.net/amr.233-235.1437.
Texto completo da fonteMoschovi, Anastasia Maria, Mattia Giuliano, Marios Kourtelesis, et al. "First of Its Kind Automotive Catalyst Prepared by Recycled PGMs-Catalytic Performance." Catalysts 11, no. 8 (2021): 942. http://dx.doi.org/10.3390/catal11080942.
Texto completo da fonteSumarasingha, Wassachol, Somsak Supasitmongkol, and Monrudee Phongaksorn. "The Effect of ZrO2 as Different Components of Ni-Based Catalysts for CO2 Reforming of Methane and Combined Steam and CO2 Reforming of Methane on Catalytic Performance with Coke Formation." Catalysts 11, no. 8 (2021): 984. http://dx.doi.org/10.3390/catal11080984.
Texto completo da fonte