Literatura científica selecionada sobre o tema "Stationary and stable solution"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Stationary and stable solution".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Stationary and stable solution"
AMBROSO, ANNALISA. "STABILITY FOR SOLUTIONS OF A STATIONARY EULER–POISSON PROBLEM". Mathematical Models and Methods in Applied Sciences 16, n.º 11 (novembro de 2006): 1817–37. http://dx.doi.org/10.1142/s0218202506001728.
Texto completo da fonteDikansky, Arnold. "Asymptotically stable stationary solutions to the reaction-diffusion equations". Bulletin of the Australian Mathematical Society 47, n.º 2 (abril de 1993): 273–86. http://dx.doi.org/10.1017/s0004972700012508.
Texto completo da fonteBass, L., A. J. Bracken, K. Holmåker e B. R. F. Jefferies. "Integro-differential equations for the self-organisation of liver zones by competitive exclusion of cell-types". Journal of the Australian Mathematical Society. Series B. Applied Mathematics 29, n.º 2 (outubro de 1987): 156–94. http://dx.doi.org/10.1017/s0334270000005701.
Texto completo da fonteLan, Xiangjun, Zhihua Feng e Fan Lv. "Stochastic Principal Parametric Resonances of Composite Laminated Beams". Shock and Vibration 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/617828.
Texto completo da fonteSUZUKI, TAKASHI. "A NOTE ON THE STABILITY OF STATIONARY SOLUTIONS TO A SYSTEM OF CHEMOTAXIS". Communications in Contemporary Mathematics 02, n.º 03 (agosto de 2000): 373–83. http://dx.doi.org/10.1142/s0219199700000189.
Texto completo da fonteFELLNER, KLEMENS, e GAËL RAOUL. "STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS". Mathematical Models and Methods in Applied Sciences 20, n.º 12 (dezembro de 2010): 2267–91. http://dx.doi.org/10.1142/s0218202510004921.
Texto completo da fonteFinkelshtein, Dmitri, Yuri Kondratiev, Stanislav Molchanov e Pasha Tkachov. "Global stability in a nonlocal reaction-diffusion equation". Stochastics and Dynamics 18, n.º 05 (12 de setembro de 2018): 1850037. http://dx.doi.org/10.1142/s0219493718500375.
Texto completo da fonteKong, Liang. "Existence of Positive Solutions of Fisher-KPP Equations in Locally Spatially Variational Habitat with Hybrid Dispersal". Journal of Mathematics Research 9, n.º 1 (2 de janeiro de 2017): 1. http://dx.doi.org/10.5539/jmr.v9n1p1.
Texto completo da fonteSurgailis, Donatas. "A quadratic ARCH(∞) model with long memory and Lévy stable behavior of squares". Advances in Applied Probability 40, n.º 04 (dezembro de 2008): 1198–222. http://dx.doi.org/10.1017/s0001867800003025.
Texto completo da fonteSurgailis, Donatas. "A quadratic ARCH(∞) model with long memory and Lévy stable behavior of squares". Advances in Applied Probability 40, n.º 4 (dezembro de 2008): 1198–222. http://dx.doi.org/10.1239/aap/1231340170.
Texto completo da fonteTeses / dissertações sobre o assunto "Stationary and stable solution"
Biesdorf, João. "Mínimos locais de funcionais com dependência especial via Γ convergência: com e sem vínculo". Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/5822.
Texto completo da fonteUniversidade Federal de Sao Carlos
We address the question of existence of stationary stable solutions to a class of reaction-diffusion equations with spatial dependence in 2 and 3-dimensional bounded domains. The approach consists of proving the existence of local minimizer of the corres-ponding energy functional. For existence, it was enough to give sufficient conditions on the diffusion coefficient and on the reaction term to ensure the existence of isolated mi¬nima of the Γlimit functional of the energy functional family. In the second part we take the techniques developed in the first part to minimize functional in 2 and 3-dimensional rectangles, with and without constraint, solving in a more general form this problem, which was originaly proposed in 1989 by Robert Kohn and Peter Sternberg.
Na primeira parte deste trabalho, abordamos a existência de soluções estacioná-rias estáveis para uma classe de equações de reação-difusão com dependência espacial em domínios limitados 2 e 3-dimensionais. Esta abordagem foi feita via existência de míni¬mos locais dos funcionais de energia correspondentes. Para tal, foi suficiente encontrar condições no coeficiente de difusão e no termo de reação que garantam existência de míni¬mos isolados do funcional Γlimite da família de funcionais de energia. Na segunda parte, aproveitamos as técnicas desenvolvidas na primeira parte para minimizar funcionais em retângulos e paralelepípedos, com e sem vínculo, resolvendo de forma bem mais geral este problema, originalmente proposto em 1989 por Robert Kohn e Peter Sternberg.
Flandoli, Franco, e Michael Högele. "A solution selection problem with small stable perturbations". Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7120/.
Texto completo da fonteKnappett, Daniel. "Numerical solution of the stationary FPK equation using Shannon wavelets". Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367109.
Texto completo da fonteHewett, Caspar Julian Mnaser. "Unconditionally stable finite difference schemes for the solution of problems in hydraulics". Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275595.
Texto completo da fonteRoutledge, Jack. "Exploring interactions between anions and kinetically stable lanthanide complexes in aqueous solution". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:69e73701-0689-475a-ac33-ee260fa8baea.
Texto completo da fonteMillis, Kathryn A. (Kathryn Ann). "Distributed measures of solution existence and its optimality in stationary electric power systems : scattering approach". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86430.
Texto completo da fonteIncludes bibliographical references (p. [149]-151).
by Kathryn A. Millis.
Ph.D.
Yevik, Andrei. "Numerical approximations to the stationary solutions of stochastic differential equations". Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/7777.
Texto completo da fonteOrtoleva, Cecilia Maria. "Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équations". Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00825627.
Texto completo da fontePerella, Andrew James. "A class of Petrov-Galerkin finite element methods for the numerical solution of the stationary convection-diffusion equation". Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5381/.
Texto completo da fonteSeif, Wael. "The development of an efficient and stable solution to the advection dispersion equation for saline groundwater flow". Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426829.
Texto completo da fonteLivros sobre o assunto "Stationary and stable solution"
Baumeister, Johann. Stable Solution of Inverse Problems. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-83967-1.
Texto completo da fonteStable solution of inverse problems. Braunschweig: F. Vieweg, 1986.
Encontre o texto completo da fontePipiras, Vladas, e Murad S. Taqqu. Stable Non-Gaussian Self-Similar Processes with Stationary Increments. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62331-3.
Texto completo da fonteGreenberg, Joseph. Stable standards of behavior: A unifying approach to solution concepts. Stanford, Calif: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1986.
Encontre o texto completo da fonteGreenberg, Joseph. Perfect equilibria paths in repeated games: The unique maximal stationary stable standard of behavior. Stanford, Calif: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1986.
Encontre o texto completo da fonteHough, Patricia D. Stable and efficient solution of weighted least-squares problems with applications in interior point methods. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1996.
Encontre o texto completo da fonteMcCallum, Bennett T. The unique minimum state variable re solution is e-stable in all well formulated linear models. Cambridge, Mass: National Bureau of Economic Research, 2003.
Encontre o texto completo da fonteInglese, G. Identification of the drift coefficient of a Fokker-Plank equation from the moment discretization of its stationary solution. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1995.
Encontre o texto completo da fonteStable Solution of Inverse Problems. Wiesbaden: Vieweg+Teubner Verlag, 1987.
Encontre o texto completo da fonteTaqqu, Murad S., e Vladas Pipiras. Stable Non-Gaussian Self-Similar Processes with Stationary Increments. Springer, 2017.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Stationary and stable solution"
Luo, Jiaowan. "Exponentially Stable Stationary Solutions for Delay Stochastic Evolution Equations". In Stochastic Analysis with Financial Applications, 169–78. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0097-6_11.
Texto completo da fonteDavydova, M. A., N. N. Nefedov e S. A. Zakharova. "Asymptotically Lyapunov-Stable Solutions with Boundary and Internal Layers in the Stationary Reaction-Diffusion-Advection Problems with a Small Transfer". In Finite Difference Methods. Theory and Applications, 216–24. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11539-5_23.
Texto completo da fonteNolan, John P. "Bounded Stationary Stable Processes and Entropy". In Stable Processes and Related Topics, 101–5. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4684-6778-9_5.
Texto completo da fonteKôno, Norio, e Makoto Maejima. "Self-Similar Stable Processes with Stationary Increments". In Stable Processes and Related Topics, 275–95. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4684-6778-9_13.
Texto completo da fonteArov, D. Z., e J. Rovnyak. "Stable Dissipative Linear Stationary Dynamical Scattering Systems". In Interpolation Theory, Systems Theory and Related Topics, 99–136. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8215-6_6.
Texto completo da fonteScott, L. Ridgway, e Dexuan Xie. "Parallel Linear Stationary Iterative Methods". In Parallel Solution of Partial Differential Equations, 31–55. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1176-1_2.
Texto completo da fonteNečasová, Šárka, e Stanislav Kračmar. "Fundamental Solution of the Stationary Problem". In Atlantis Briefs in Differential Equations, 25–38. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-231-1_4.
Texto completo da fonteJanicki, Aleksander, e Aleksander Weron. "Spectral Representations of Stationary Processes". In Simulation and Chaotic Behavior of α-Stable Stochastic Processes, 111–40. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208877-5.
Texto completo da fonteJanicki, Aleksander, e Aleksander Weron. "Chaotic Behavior of Stationary Processes". In Simulation and Chaotic Behavior of α-Stable Stochastic Processes, 231–62. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208877-9.
Texto completo da fontePodgórski, Krzysztof, e Aleksander Weron. "Characterizations of ergodic stationary stable processes via the dynamical functional". In Stable Processes and Related Topics, 317–28. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4684-6778-9_16.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Stationary and stable solution"
Pan, Ruigui, e Huw G. Davies. "Nonstationary Response of a Two-Degrees-of-Freedom Nonlinear Ship Model Under Modulated Excitation". In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0245.
Texto completo da fonteAidanpa¨a¨, Jan-Olov. "Multiple Solutions in an Amplitude Limited Jeffcott Rotor Including Rubbing and Stick-Slip Effect". In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84616.
Texto completo da fonteGanesan, R., e T. S. Sankar. "Resonant Oscillations and Stability of Asymmetric Rotors". In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0099.
Texto completo da fonteCohen, Nadav, e Izhak Bucher. "The Dynamics of a Bi-Stable Energy Harvester: Exploration via Slow-Fast Decomposition and Analytical Modeling". In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-83013.
Texto completo da fonteChilds, Dara W. "The Multiple Contributions of Jorgen Lund’s Ph.D. Dissertation, “Self-Excited, Stationary Whirl Orbits of a Journal in Sleeve Bearings,” RPI, 1966, Engineering Mechanics". In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21370.
Texto completo da fonteBanik, A. K., e T. K. Datta. "Stochastic Response and Stability Analysis of Single Leg Articulated Tower". In ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2003. http://dx.doi.org/10.1115/omae2003-37032.
Texto completo da fonteIshida, Yukio, Kimihiko Yasuda e Shin Murakami. "Nonstationary Vibration of a Rotating Shaft With Nonlinear Spring Characteristics During Acceleration Through a Major Critical Speed: A Discussion by the Asymptotic Method and the FFT Method". In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0120.
Texto completo da fonteHill, D. Lee. "Sectional Modeling of a Centrifugal Compressor". In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27172.
Texto completo da fonteZhu, W. D., e K. Wu. "Dynamic Stability of Translating and Stationary Strings With Sinusoidally Varying Velocities". In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86182.
Texto completo da fonteLiu, Yoncai, Hamdi Sheibani, Susumu Sakai, Yasunori Okano e Sadik Dost. "A Three Dimensional Simulation Model for Liquid Phase Electroepitaxy Under Magnetic Field". In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1537.
Texto completo da fonteRelatórios de organizações sobre o assunto "Stationary and stable solution"
Cambanis, Stamatis, e Makoto Maejima. Two Classes of Self-Similar Stable Processes with Stationary Increments. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1988. http://dx.doi.org/10.21236/ada192842.
Texto completo da fonteYoung, D. M., e D. R. Kincaid. Linear stationary second-degree methods for the solution of large linear systems. Office of Scientific and Technical Information (OSTI), julho de 1990. http://dx.doi.org/10.2172/674848.
Texto completo da fonteMcCallum, Bennett. The Unique Minimum State Variable RE Solution is E-Stable in All Well Formulated Linear Models. Cambridge, MA: National Bureau of Economic Research, setembro de 2003. http://dx.doi.org/10.3386/w9960.
Texto completo da fonteGaluszka-Muga, Barbara, e Luis M. Muga. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels. Office of Scientific and Technical Information (OSTI), dezembro de 2006. http://dx.doi.org/10.2172/892996.
Texto completo da fonteLillard, Scott, e Robert Hanrahan. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels. Office of Scientific and Technical Information (OSTI), junho de 2005. http://dx.doi.org/10.2172/893224.
Texto completo da fonteLillard, R. Scott, e Robert J. Hanrahan. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels. Office of Scientific and Technical Information (OSTI), junho de 2002. http://dx.doi.org/10.2172/835035.
Texto completo da fonteLillard, R. Scott, e Robert J. Hanrahan. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels. Office of Scientific and Technical Information (OSTI), junho de 2003. http://dx.doi.org/10.2172/835036.
Texto completo da fonteGaluszka-Muga, Barbara. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels. Office of Scientific and Technical Information (OSTI), maio de 2005. http://dx.doi.org/10.2172/840166.
Texto completo da fonteLillard, Scott, e Robert Hanrahan. The Influence of Radiation on Pit Solution Chemistry as it Pertains to the Transition from Metastable to Stable Pitting in Steels. Office of Scientific and Technical Information (OSTI), junho de 2004. http://dx.doi.org/10.2172/839104.
Texto completo da fonteNORTHWEST RESEARCH ASSOCIATES INC BELLEVUE WA. Surface Layer Flux Sources and Parameterization Failure in Stable Conditions from CASES-99 Data Analysis: Impacts of Intermittent Turbulence its Sources and a Proposed Solution. Fort Belvoir, VA: Defense Technical Information Center, abril de 2003. http://dx.doi.org/10.21236/ada415238.
Texto completo da fonte