Literatura científica selecionada sobre o tema "STEEP ANGLE"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "STEEP ANGLE".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "STEEP ANGLE"
Brüninghaus, Jan, Anna Oster e Bernd Kuhlenkötter. "Accuracy and Material Properties in Incremental Forming for a Multi-Step Expanding Approach". Key Engineering Materials 639 (março de 2015): 179–86. http://dx.doi.org/10.4028/www.scientific.net/kem.639.179.
Texto completo da fontePurnomo, Dhika Aditya, Fipka Bisono e Rizal Indrawan. "Analysis of Threshold Angle Variations on The Quality of Finishing Free-form Surface in CNC Milling Process". International Journal of Science, Engineering and Information Technology 6, n.º 2 (31 de julho de 2022): 318–22. http://dx.doi.org/10.21107/ijseit.v6i2.14952.
Texto completo da fonteSun, Zhicheng, Aoyu Zhang, Xiaotong Li e Yuan Xue. "Test Analysis of 220 kV Rotating Transmission Angle Tower". Journal of Physics: Conference Series 2557, n.º 1 (1 de julho de 2023): 012031. http://dx.doi.org/10.1088/1742-6596/2557/1/012031.
Texto completo da fonteGilbert, Kenneth E. "Wide-angle formulation of the Beilis-Tappert method". Journal of the Acoustical Society of America 152, n.º 2 (agosto de 2022): 1170–79. http://dx.doi.org/10.1121/10.0013727.
Texto completo da fonteMakarov, V. N., V. Ya Potapov, N. V. Makarov e A. V. Ugolnikov. "GENESIS OF EFFICIENCY OF STEEP ANGLE CONVEYOR BELTS". MINING INFORMATIONAL AND ANALYTICAL BULLETIN 5 (2018): 165–70. http://dx.doi.org/10.25018/0236-1493-2018-5-0-165-170.
Texto completo da fonteLoye, A., M. Jaboyedoff e A. Pedrazzini. "Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis". Natural Hazards and Earth System Sciences 9, n.º 5 (8 de outubro de 2009): 1643–53. http://dx.doi.org/10.5194/nhess-9-1643-2009.
Texto completo da fonteGlen, F., A. C. Broderick, B. J. Godley, J. D. Metcalfe e G. C. Hays. "Dive angles for a green turtle (Chelonia mydas)". Journal of the Marine Biological Association of the United Kingdom 81, n.º 4 (agosto de 2001): 683–86. http://dx.doi.org/10.1017/s0025315401004374.
Texto completo da fonteWesley, Laurence D. "Coulomb wedge analysis of cuts in steep slopes". Canadian Geotechnical Journal 38, n.º 6 (1 de dezembro de 2001): 1354–59. http://dx.doi.org/10.1139/t01-049.
Texto completo da fonteHong, Yung-Shan, Rong-Her Chen, Cho-Sen Wu e Jian-Ren Chen. "Shaking table tests and stability analysis of steep nailed slopes". Canadian Geotechnical Journal 42, n.º 5 (1 de outubro de 2005): 1264–79. http://dx.doi.org/10.1139/t05-055.
Texto completo da fonteMajidov, Takhir, e Nazir Ikramov. "Influence of flow hydraulic characteristics on the ridge lower escarpment angle". E3S Web of Conferences 264 (2021): 03015. http://dx.doi.org/10.1051/e3sconf/202126403015.
Texto completo da fonteTeses / dissertações sobre o assunto "STEEP ANGLE"
Birner, Sabrina Marguerite. "Steep reference angle holography : analysis and applications". Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/71398.
Texto completo da fonteSibold, Ridge Alexander. "The Effect of Density Ratio on Steep Injection Angle Purge Jet Cooling for a Converging Nozzle Guide Vane Endwall at Transonic Conditions". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/102650.
Texto completo da fonteMaster of Science
Kennedy, Richard C. "A Study on the Effect of Jumbo Angles on the Strength and Stiffness of Top-and-Seat Angle Connections". University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1416233620.
Texto completo da fonteGassner, Alexandra Carina. "The character of the core-mantle boundary : a systematic study using PcP". Bachelor's thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6359/.
Texto completo da fonte-15% VS and +5% density explain the measured PcP amplitudes. Moreover, below SW Finland and NNW of the Caspian Sea a CMB topography can be assumed. The amplitude measurements indicate a wavelength of 200 km and a height of 1 km topography, previously also shown in the study by Kampfmann and Müller (1989). Better constraints might be provided by a joined analysis of seismological data, mineralogical experiments and geodynamic modelling.
Unter der Annahme, dass flüssiges Eisen aus dem äußeren Erdkern mit dem festen, silikat-reichen Unteren Mantel reagiert, wird eine Einflussnahme auf die Kern-Mantel Reflexionsphase PcP erwartet. Ist die Kern-Mantel Grenze aufgeweicht, und nicht wie bislang angenommen ein diskreter Übergang, so zeichnet sich dies in der Wellenform und Amplitude von PcP ab. Die Interaktion mit Eisen führt zu teilweise aufgeschmolzenen Bereichen höherer Dichte, welche die seismischen Wellengeschwindigkeiten herabsetzen. Basierend auf den Berechnungen von kurzperiodischen synthetischen Seismogrammen, mittels der Reflektivitäts- und Gauss Beam Methode, soll ein möglicher Modellraum dieser Niedriggeschwindigkeitszonen ermittelt werden. Das Ziel dieser Arbeit ist es das Verhalten von PcP im Distanzbereich von 10° bis 40° unter dem Einfluss dieser Modelle mit diversen Geschwindigkeits- und Dichtekontrasten zu untersuchen. Ferner wird das Auflösungsvermögen hinsichtlich seismischer Daten diskutiert. Entscheidende Parameter wie Anomaliedicke, Quellfrequenz und Topographie werden hierbei analysiert. Tiefe Erdbeben und Kernexplosionen, die sich im entsprechenden Entfernungsbereich zum Gräfenberg und NORSAR Array befinden, werden anschließend im Hinblick auf PcP ausgewertet. Das seismische Auflösungsvermögen von Niedriggeschwindigkeitszonen ist stark begrenzt sowohl in Bezug auf Geschwindigkeits- und Dichtekontraste als auch hinsichtlich der Mächtigkeit. Es besteht sogar die Möglichkeit einer dünnen, globalen Kern-Mantel Übergangszone, selbst mit großen Impedanzkontrasten, ohne dass dies mit seismologischen Methoden detektiert werden könnte: Wird kein precursor zu PcP beobachtet aber das PcPmodel /PcPsmooth Amplitudenverhältnis zeigt gleichzeitig eine Reduktion von mehr als 10%, dann könnte eine sehr dünne Niedriggeschwindigkeitszone von ca. 5 km Mächtigkeit und einer Diskontinuität erster Ordnung vorliegen. Andererseits, ist PcP um weniger als 10% reduziert, könnte dies entweder auf eine dünne, moderate Niedriggeschwindigkeitszone oder einen graduellen Kern-Mantel Übergang hindeuten. Die synthetischen Berechnungen ergeben starke Amplitudenvariationen als Funktion der Distanz, welche auf den Impedanzkontrast zurückzuführen sind. Dabei ergibt sich ein primärer Dichteeffekt im extremen Steilwinkelbereich und ein maßgeblicher Geschwindigkeitseinfluss im Weitwinkelbereich. Im Hinblick auf die modellierten Resultate lässt sich eine 10 - 13.5 km mächtige Niedriggeschwindigkeitszone 600 km südöstlich von Moskau mit einer NW-SE Ausdehnung von mindestens 450 km folgern, wobei eine exakte Aussage über Geschwindigkeiten und Dichte nicht möglich ist. Dies ist im Konsens mit den synthetischen Berechnungen, wonach viele unterschiedliche Modelle ähnliche Amplituden- und Wellenformcharakteristiken erzeugen. Zum Beispiel erklärt ein Modell mit Kontrasten von -5% VP
-15% VS and +5% Dichte die gemessenen PcP Amplituden. Darüber hinaus können unterhalb des südwestlichen Finnlands und nord-nordwestlich des Kaspischen Meeres Undulationen an der Kern-Mantel Grenze selbst vermutet werden. Unter Berücksichtigung früherer Studien, z. B. von Kampfmann and Müller (1989), deuten die Messergebnisse auf eine laterale Topographie von 200 km und eine Höhe von 1 km hin. Eine Eingrenzung der potentiellen Anomaliemodelle kann nur durch eine gemeinsame Auswertung mit mineralogischen Experimenten und geodynamischen Modellierungen erfolgen.
Shani, Mehul A. "Compressive strength of eccentrically loaded steel angles". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0013/MQ52481.pdf.
Texto completo da fonteGAO, XIAOJIANG. "STRENGTH DETERMINATION OF HEAVY CLIP-ANGLE CONNECTION COMPONENTS". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1134401462.
Texto completo da fonteLeong, Chuen Shiong. "Repair/strengthening of steel angles using thermal spray metallizing". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0013/MQ53172.pdf.
Texto completo da fonteWeiner, Stephen (Stephen Andrew). "Design of mechanical testing device to measure break angle of thin, stainless steel". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32969.
Texto completo da fonteIncludes bibliographical references (leaf 25).
Working with Gillette Corporation, an automated mechanical testing tool that bent a small flat piece of steel was designed. The design of the tool was an effort to improve upon previous generations of the same tool. It consisted of three main elements; a servomotor, connected to a torque transducer, which was connected to a break device. A thin piece of steel was loaded into the break device and the motor was activated, moving a flipper arm on the device which bent the steel. While bending this piece of steel, the torque transducer would relay torque and angle information to a computer. This information was collected and displayed in Excel as torque versus angle plots, which would show the moment at which the piece of steel was broken. This entire process was automated so that after loading the steel, one click of a button would run one test. Razorblades were primarily bent with the device until they would break, and for this reason, the measuring tool was called the 'blade break test.' The work consisted of designing a robust mechanical system coupling the three devices mentioned above in series. Code was written in Visual Basic that managed all the individual devices in the measuring tool, getting them to work together and linking them with a computer.
(cont.) A user interface was designed with engineers in mind, imbedding automated data collection and representation through Excel. Finally, a manual was created accompanying the device so other engineers could use, troubleshoot, and modify the 'break test.' The result of this project was the creation of a successful measuring instrument with full documentation and functionality.
by Stephen Weiner.
S.B.
Reynolds, Nicholas A. "Behavior and design of concentrically loaded duplex stainless steel single equal-leg angle struts". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49074.
Texto completo da fonteKnobel, Christian. "Optimal control allocation for road vehicle dynamics using wheel steer angles, brake, drive torques camber angles". Düsseldorf VDI-Verl, 2009. http://d-nb.info/992593425/04.
Texto completo da fonteLivros sobre o assunto "STEEP ANGLE"
Branstetter, J. Robert. B-737 flight test of curved-path and steep-angle approaches using MLS guidance. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Encontre o texto completo da fonteBranstetter, J. Robert. B-737 flight test of curved-path and steep-angle approaches using MLS guidance. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Encontre o texto completo da fonteUnited States International Trade Commission. Stainless steel angles from Japan. Washington, DC: U.S. International Trade Commission, 1994.
Encontre o texto completo da fonteB, Kennedy John, ed. Single and compound angle members: Structural analysis and design. London: Elsevier Applied Science, 1985.
Encontre o texto completo da fonteAmerican Institute of Steel Construction. Load and resistance factor design specification for single-angle members. Chicago, IL: American Institute of Steel Construction, 2001.
Encontre o texto completo da fonteVlachos, Konstantinos. A wide angle split-step parabolic equation model for propagation predictions over terrain. Monterey, Calif: Naval Postgraduate School, 1996.
Encontre o texto completo da fonteFraser, George MacDonald. The steel bonnets: The story of the Anglo-Scottish Border reivers. London: Collins Harvill, 1989.
Encontre o texto completo da fonteMeador, Don A. How to build the mighty metal miter for cutting angle, square, flat, and round steel. Freeman, MO: Millenial Marketing, 1997.
Encontre o texto completo da fonteStep down Shakespeare, the stone angel is here: Essays on literature : Canadian and Sri Lankan. Colombo: Godage International Publishers, 2011.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "STEEP ANGLE"
Barcewicz, W., S. Wierzbicki, M. A. Giżejowski, S. Labocha e R. Czyż. "Experimental investigation of angle length effect – angles in tension connected by one leg". In Modern Trends in Research on Steel, Aluminium and Composite Structures, 85–91. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-7.
Texto completo da fonteTatsumi, Nobuhiko, e Shoichi Kishiki. "Connection Strength of Braces with Angle Steel and Channel Steel". In Lecture Notes in Civil Engineering, 319–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03811-2_31.
Texto completo da fonteMoradi, Sona, Saeid Kamal e Savvas G. Hatzikiriakos. "Laser Ablated Micro/Nano-Patterned Superhydrophobic Stainless Steel Substrates". In Advances in Contact Angle, Wettability and Adhesion, 285–304. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119117018.ch11.
Texto completo da fonteTylek, Izabela Alicja. "Random Initial Twist Angle of Steel Multistory Building Frames". In Design, Fabrication and Economy of Metal Structures, 357–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36691-8_54.
Texto completo da fonteDe Matteis, G., R. Landolfo e L. Calado. "Cyclic behavior of semi-rigid angle connections: A comparative study of tests and modeling". In Behaviour of Steel Structures in Seismic Areas, 165–74. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-24.
Texto completo da fonteBehzadi-Sofiani, B., L. Gardner e M. A. Wadee. "Numerical simulation and design of steel equal-leg angle section beams". In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 937–43. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-153.
Texto completo da fonteBehzadi-Sofiani, B., L. Gardner e M. A. Wadee. "Numerical simulation and design of steel equal-leg angle section beams". In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 327–28. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-153.
Texto completo da fonteZhong, C., Z. M. Shang, G. J. Wen, X. Liu, H. M. Wang e C. Li. "A Step-by-Step Exact Measuring Angle Calibration Applicable for Multi-Detector Stitched Aerial Camera". In 5th International Symposium of Space Optical Instruments and Applications, 235–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27300-2_23.
Texto completo da fonteBeyer, A., A. Bureau, J.-P. Jaspart, J. F. Demonceau e M.-Z. Bezas. "Torsional, flexural and torsional-flexural buckling of angle section members – an analytical approach". In Modern Trends in Research on Steel, Aluminium and Composite Structures, 400–406. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-51.
Texto completo da fonteBernatowska, E., e L. Ślęczka. "Failure modes of steel angles connected by one leg". In Modern Trends in Research on Steel, Aluminium and Composite Structures, 307–13. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-38.
Texto completo da fonteTrabalhos de conferências sobre o assunto "STEEP ANGLE"
Shan, Guojian, e Biondo Biondi. "Angle‐domain common‐image gathers for steep reflectors". In SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008. http://dx.doi.org/10.1190/1.3063982.
Texto completo da fonteLee, Jong-Sen, Thomas L. Ainsworth e Yanting Wang. "Polarization Orientation Angle and Scattering Characteristics of Steep Terrain". In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8517678.
Texto completo da fonteLiang, Liting, Yunhua Zhang e Dong Li. "Range Extension of Polarization Orientation Angle Estimation over Steep Terrain". In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019. http://dx.doi.org/10.1109/apsar46974.2019.9048475.
Texto completo da fonteJia, Xiaofeng, e Ru‐Shan Wu. "Imaging steep salt flanks by super‐wide angle one‐way method". In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2792936.
Texto completo da fonteXu-hui Fu e Jiang Hu. "Influence of flow angle on local scour depth in steep gravel river". In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5775445.
Texto completo da fonteChang, Guiping, Ming Zhu, Rui Tang, Zhiyun Tian, Lixin Ai, Jihuan Peng, Lianguang Ning e Lei Wang. "Optimal Design for High and Steep Slope Angle of Open-pit Mine". In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.91.
Texto completo da fonteElahi, Mirza M., e Avik W. Ghosh. "Current saturation and steep switching in graphene PN junctions using angle-dependent scattering". In 2016 74th Annual Device Research Conference (DRC). IEEE, 2016. http://dx.doi.org/10.1109/drc.2016.7548421.
Texto completo da fontePereira, Paulo S. D., Marcio M. Mourelle e Ludimar L. de Aguiar. "Steel Steep Wave Riser as an Alternative Configuration for FPSO’s Compliant Risers". In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41098.
Texto completo da fontePeter, Jennifer, Jovauna M. Currey, Meir Marmor, Jenni M. Buckley e William McGann. "Validation of a Simple, Laser-Guided System for Prescribing Acetabular Cup Inclination Angle in Total Hip Arthroplasty". In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206322.
Texto completo da fonteSprague, James K., e Shyi-Ping Liu. "Automated Stability Analysis of a Vehicle in Combined Pitch and Roll". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33184.
Texto completo da fonteRelatórios de organizações sobre o assunto "STEEP ANGLE"
Ostashev, Vladimir, Michael Muhlestein e D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), setembro de 2021. http://dx.doi.org/10.21079/11681/42043.
Texto completo da fontePurasinghe, Rupasiri. Experimental determination of post-buckling performance of steel angles. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.3156.
Texto completo da fonteRadhakrishnan, Perumal. Post-buckled performance of partially restrained and intermediately supported steel angles. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.5493.
Texto completo da fonteMao, Xiao-Yong, Li-Ren Zhou e Zhen Zhang. EXPERIMENTAL STUDY AND THEORETIC ANALYSIS ON FIRE RESISTANCE OF ANGLE STEEL STRENGTHENED REINFORCED CONCRETE COLUMNS. The Hong Kong Institute of Steel Construction, dezembro de 2018. http://dx.doi.org/10.18057/icass2018.p.099.
Texto completo da fonteGilsinn, David E., e W. Tyler Estler. An algorithm to position the NISIT Advanced Automated Master Angle Calibration System (AAMACS) to the least angular step. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4878.
Texto completo da fonteMannucci e Demofonti. L51882 Mill Test Techniques for Predicting Crack Arrest Ability in High Toughness Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), março de 2002. http://dx.doi.org/10.55274/r0011210.
Texto completo da fonteThieberger, P., A. Hanson, D. Steski, V. Zajic, S. Zhang e H. Ludewig. Secondary Electron Yields and Their Dependence on the Angle of Incidence on Stainless Steel Surfaces for Three Energetic Ion Beams. Office of Scientific and Technical Information (OSTI), agosto de 1999. http://dx.doi.org/10.2172/1157242.
Texto completo da fonteTehrani, Fariborz M., Kenneth L. Fishman e Farmehr M. Dehkordi. Extending the Service-Life of Bridges using Sustainable and Resilient Abutment Systems: An Experimental Approach to Electrochemical Characterization of Lightweight Mechanically Stabilized Earth. Mineta Transportation Institute, julho de 2023. http://dx.doi.org/10.31979/mti.2023.2225.
Texto completo da fonteRahman, Shahedur, Rodrigo Salgado, Monica Prezzi e Peter J. Becker. Improvement of Stiffness and Strength of Backfill Soils Through Optimization of Compaction Procedures and Specifications. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317134.
Texto completo da fonteRosse, Anine. Stream channel monitoring for Wind Cave National Park 2021 Data report. National Park Service, janeiro de 2023. http://dx.doi.org/10.36967/2296623.
Texto completo da fonte