Literatura científica selecionada sobre o tema "Stochastic neutronics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Stochastic neutronics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Stochastic neutronics"
Liu, Shichang, Guanbo Wang, Gaochen Wu e Kan Wang. "Neutronics comparative analysis of plate-type research reactor using deterministic and stochastic methods". Annals of Nuclear Energy 79 (maio de 2015): 133–42. http://dx.doi.org/10.1016/j.anucene.2015.01.027.
Texto completo da fonteLiu, Shichang, Guanbo Wang, Jingang Liang, Gaochen Wu e Kan Wang. "Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods". Annals of Nuclear Energy 85 (novembro de 2015): 830–36. http://dx.doi.org/10.1016/j.anucene.2015.06.041.
Texto completo da fonteLebrat, J. F., G. Aliberti, A. D’Angelo, A. Billebaud, R. Brissot, H. Brockmann, M. Carta et al. "Global Results from Deterministic and Stochastic Analysis of the MUSE-4 Experiments on the Neutronics of Accelerator-Driven Systems". Nuclear Science and Engineering 158, n.º 1 (janeiro de 2008): 49–67. http://dx.doi.org/10.13182/nse05-100.
Texto completo da fonteSantanoceto, Mario, Marco Tiberga, Zoltán Perkó, Sandra Dulla e Danny Lathouwers. "UNCERTAINTY QUANTIFICATION IN STEADY STATE SIMULATIONS OF A MOLTEN SALT SYSTEM USING POLYNOMIAL CHAOS EXPANSION ANALYSIS". EPJ Web of Conferences 247 (2021): 15008. http://dx.doi.org/10.1051/epjconf/202124715008.
Texto completo da fonteMuñoz-Cobo, J. L., e G. Verdú. "Neutron stochastic transport theory with delayed neutrons". Annals of Nuclear Energy 14, n.º 7 (janeiro de 1987): 327–50. http://dx.doi.org/10.1016/0306-4549(87)90114-9.
Texto completo da fonteKHRENNIKOV, ANDREI. "QUANTUM PROBABILITIES FROM DETECTION THEORY FOR CLASSICAL RANDOM FIELD". Fluctuation and Noise Letters 08, n.º 03n04 (dezembro de 2008): L393—L400. http://dx.doi.org/10.1142/s0219477508005148.
Texto completo da fonteXenofontos, T., G. K. Delipei, P. Savva, M. Varvayanni, J. Maillard, J. Silva e N. Catsaros. "Testing the new stochastic neutronic code ANET in simulating safety important parameters". Annals of Nuclear Energy 103 (maio de 2017): 85–96. http://dx.doi.org/10.1016/j.anucene.2017.01.012.
Texto completo da fonteYARMUKHAMEDOV, R., e M. K. UBAYDULLAEVA. "ON ASYMPTOTICS OF THREE-BODY BOUND STATE RADIAL WAVE FUNCTIONS OF HALO NUCLEI NEAR THE HYPERANGLE φ~0 AND φ~π/2 IN THE CONFIGURATION SPACE AND THREE-BODY ASYMPTOTIC NORMALIZATION FACTORS FOR 6He NUCLEUS IN THE (n+n+α)-CHANNEL". International Journal of Modern Physics E 18, n.º 07 (agosto de 2009): 1561–85. http://dx.doi.org/10.1142/s0218301309013701.
Texto completo da fonteTAMAGNO, Pierre, e Elias VANDERMEERSCH. "Comprehensive stochastic sensitivities to resonance parameters". EPJ Web of Conferences 239 (2020): 13008. http://dx.doi.org/10.1051/epjconf/202023913008.
Texto completo da fontePál, Lénard, e Imre Pázsit. "Stochastic Theory of the Fission Chamber Current Generated by Non-Poissonian Neutrons". Nuclear Science and Engineering 184, n.º 4 (dezembro de 2016): 537–50. http://dx.doi.org/10.13182/nse16-18.
Texto completo da fonteTeses / dissertações sobre o assunto "Stochastic neutronics"
Xenofontos, Thalia. "Development of a dynamic stochastic neutronic code for the analysis of conventional and hybrid nuclear reactors". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX013/document.
Texto completo da fonteThe necessity for precise simulations of a nuclear reactor especially in case of complex core and fuel configurations has imposed the increasing use of Monte Carlo (MC) neutronics codes. Besides, a demand of additional stochastic codes’ inherent capabilities has emerged regarding mainly the simulation of the temporal variations in the core isotopic composition as well as the incorporation of the T-H feedback. In addition to the above, the design of innovative nuclear reactor concepts, such as the Accelerator Driven System (ADSs), imposed extra requirements of simulation capabilities. More specifically, the combination of an accelerator and a nuclear reactor in the ADS requires the simulation of both subsystems for an integrated system analysis. Therefore a need arises for more advanced simulation tools, able to cover the broad neutrons energy spectrum involved in these systems.This work presents the main features and capabilities of the new MC neutronics code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback), being developed in NCSR Demokritos (Greece) in cooperation with CNRS/IDRIS and UPMC (France) and intending to meet as effectively as possible the above described modelling requirements. ANET is based on the open-source version of the HEP code GEANT3.21 and is targeting to the creation of an enhanced computational tool in the field of reactor analysis, capable of simulating both GEN II/III reactors and ADSs. ANET is structured with inherent capability of (a) performing burnup calculations and (b) simulating the spallation process in the ADS analysis, while taking T-H feedback into account.The current ANET version utilizes the three standard Monte Carlo estimators for the neutron multiplication factor (keff) calculation, i.e. the collision estimator, the absorption estimator and the track-length estimator. Regarding the simulation of neutron fluence and reaction rates, the collision and the track-length estimators are implemented in ANET following the standard Monte Carlo procedure. For the burnup calculations ANET attempts to apply a pure Monte Carlo approach, adopting the typical procedure followed in stochastic codes. With respect to code improvements for the ADS analysis, so far ANET has incorporated the INCL/ABLA code so that the spallation process can be inherently simulated. The ANET reliability in typical computations was tested using observational data and parallel simulations by different codes as described in the following chapters.Various installations and international benchmarks were considered suitable for the verification and validation of all the previously mentioned features incorporated in the new code ANET. The obtained results are compared with experimental data from the nuclear infrastructures and with computations performed by well-established stochastic or deterministic neutronics codes and show satisfactory agreement with both measurements and independent computations, verifying thus ANET’s ability to successfully simulate important parameters of critical and subcritical systems. Also, the preliminary ANET application for dynamic analysis is encouraging since it indicates the code capability to inherently provide a reasonable prediction for the core inventory evolution taking into account the uncertainties of the order of 20% and even higher that are traditionally expected in core inventory evolution calculations. Lastly, the code performance in the KUCA case was found satisfactory demonstrating thus inherent capability of analyzing ADSs
Mulatier, Clélia de. "A random walk approach to stochastic neutron transport". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS029/document.
Texto completo da fonteOne of the key goals of nuclear reactor physics is to determine the distribution of the neutron population within a reactor core. This population indeed fluctuates due to the stochastic nature of the interactions of the neutrons with the nuclei of the surrounding medium: scattering, emission of neutrons from fission events and capture by nuclear absorption. Due to these physical mechanisms, the stochastic process performed by neutrons is a branching random walk. For most applications, the neutron population considered is very large, and all physical observables related to its behaviour, such as the heat production due to fissions, are well characterised by their average values. Generally, these mean quantities are governed by the classical neutron transport equation, called linear Boltzmann equation. During my PhD, using tools from branching random walks and anomalous diffusion, I have tackled two aspects of neutron transport that cannot be approached by the linear Boltzmann equation. First, thanks to the Feynman-Kac backward formalism, I have characterised the phenomenon of “neutron clustering” that has been highlighted for low-density configuration of neutrons and results from strong fluctuations in space and time of the neutron population. Then, I focused on several properties of anomalous (non-exponential) transport, that can model neutron transport in strongly heterogeneous and disordered media, such as pebble-bed reactors. One of the novel aspects of this work is that problems are treated in the presence of boundaries. Indeed, even though real systems are finite (confined geometries), most of previously existing results were obtained for infinite systems
Larmier, Coline. "Stochastic particle transport in disordered media : beyond the Boltzmann equation". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS388/document.
Texto completo da fonteHeterogeneous and disordered media emerges in several applications in nuclear science and engineering, especially in relation to neutron and photon propagation. Examples are widespread and concern for instance the double-heterogeneity of the fuel elements in pebble-bed reactors, or the assessment of re-criticality probability due to the random arrangement of fuel resulting from severe accidents. In this Thesis, we will investigate linear particle transport in random media. In the first part, we will focus on some mathematical models that can be used for the description of random media. Special emphasis will be given to stochastic tessellations, where a domain is partitioned into convex polyhedra by sampling random hyperplanes according to a given probability. Stochastic inclusions of spheres into a matrix will be also briefly introduced. A computer code will be developed in order to explicitly construct such geometries by Monte Carlo methods. In the second part, we will then assess the general features of particle transport within random media. For this purpose, we will consider some benchmark problems that are simple enough so as to allow for a thorough understanding of the effects of the random geometries on particle trajectories and yet retain the key properties of linear transport. Transport calculations will be realized by using the Monte Carlo particle transport code Tripoli4, developed at SERMA. The cases of quenched and annealed disorder models will be separately considered. In the former, an ensemble of geometries will be generated by using our computer code, and the transport problem will be solved for each configuration: ensemble averages will then be taken for the observables of interest. In the latter, effective transport model capable of reproducing the effects of disorder in a single realization will be investigated. The approximations of the annealed disorder models will be elucidated, and significant ameliorations will be proposed
Mesado, Melia Carles. "Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR". Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/86167.
Texto completo da fonteEste trabajo de doctorado, desarrollado en la Universitat Politècnica de València (UPV), tiene como objetivo cubrir la primera fase del benchmark presentado por el grupo de expertos Uncertainty Analysis in Modeling (UAM-LWR). La principal contribución al benchmark, por parte del autor de esta tesis, es el desarrollo de un programa de MATLAB solicitado por los organizadores del benchmark, el cual se usa para generar librerías neutrónicas a distribuir entre los participantes del benchmark. El benchmark del UAM pretende determinar la incertidumbre introducida por los códigos multifísicos y multiescala acoplados de análisis de reactores de agua ligera. El citado benchmark se divide en tres fases: 1. Fase neutrónica: obtener los parámetros neutrónicos y secciones eficaces del problema específico colapsados y homogenizados, además del análisis de criticidad. 2. Fase de núcleo: análisis termo-hidráulico y neutrónico por separado. 3. Fase de sistema: análisis termo-hidráulico y neutrónico acoplados. En esta tesis se completan los principales objetivos de la primera fase. Concretamente, se desarrolla una metodología para propagar la incertidumbre de secciones eficaces y otros parámetros neutrónicos a través de un código lattice y un simulador de núcleo. Se lleva a cabo un análisis de incertidumbre y sensibilidad para las secciones eficaces contenidas en la librería neutrónica ENDF/B-VII. Su incertidumbre se propaga a través del código lattice SCALE6.2.1, incluyendo las fases de colapsación y homogenización, hasta llegar a la generación de una librería neutrónica específica del problema. Luego, la incertidumbre contenida en dicha librería puede continuar propagándose a través de un simulador de núcleo, para este estudio PARCSv3.2. Para el análisis de incertidumbre y sensibilidad se ha usado el módulo SAMPLER -disponible en la última versión de SCALE- y la herramienta estadística DAKOTA 6.3. Como parte de este proceso, también se ha desarrollado una metodología para obtener librerías neutrónicas en formato NEMTAB para ser usadas en simuladores de núcleo. Se ha realizado una comparación con el código CASMO-4 para obtener una verificación de la metodología completa. Esta se ha probado usando un reactor de agua en ebullición del tipo BWR. Sin embargo, no hay ninguna preocupación o limitación respecto a su uso con otro tipo de reactor nuclear. Para la cuantificación de la incertidumbre se usa la metodología estocástica Gesellschaft für Anlagen und Reaktorsicherheit (GRS). Esta metodología hace uso del modelo de alta fidelidad y un muestreo no paramétrico para propagar la incertidumbre. Como resultado, el número de muestras (determinado con la fórmula revisada de Wilks) no depende del número de parámetros de entrada, sólo depende del nivel de confianza e incertidumbre deseados de los parámetros de salida. Además, las funciones de distribución de probabilidad no están limitadas a normalidad. El principal inconveniente es que se ha de disponer de las distribuciones de probabilidad de cada parámetro de entrada. Si es posible, las distribuciones de probabilidad de entrada se definen usando información encontrada en la literatura relacionada. En caso contrario, la incertidumbre se define en base a la opinión de un experto. Se usa un segundo escenario para propagar la incertidumbre de diferentes parámetros termo-hidráulicos a través del código acoplado TRACE5.0p3/PARCSv3.0. En este caso, se utiliza un reactor tipo PWR para simular un transitorio de una caída de barra. Como nueva característica, el núcleo se modela elemento a elemento siguiendo una discretización totalmente en 3D. No se ha encontrado ningún otro estudio que use un núcleo tan detallado en 3D. También se usa la metodología GRS y el DAKOTA 6.3 para este análisis de incertidumbre y sensibilidad.
Aquest treball de doctorat, desenvolupat a la Universitat Politècnica de València (UPV), té com a objectiu cobrir la primera fase del benchmark presentat pel grup d'experts Uncertainty Analysis in Modeling (UAM-LWR). La principal contribució al benchmark, per part de l'autor d'aquesta tesi, es el desenvolupament d'un programa de MATLAB sol¿licitat pels organitzadors del benchmark, el qual s'utilitza per a generar llibreries neutròniques a distribuir entre els participants del benchmark. El benchmark del UAM pretén determinar la incertesa introduïda pels codis multifísics i multiescala acoblats d'anàlisi de reactors d'aigua lleugera. El citat benchmark es divideix en tres fases: 1. Fase neutrònica: obtenir els paràmetres neutrònics i seccions eficaces del problema específic, col¿lapsats i homogeneïtzats, a més de la anàlisi de criticitat. 2. Fase de nucli: anàlisi termo-hidràulica i neutrònica per separat. 3. Fase de sistema: anàlisi termo-hidràulica i neutrònica acoblats. En aquesta tesi es completen els principals objectius de la primera fase. Concretament, es desenvolupa una metodologia per propagar la incertesa de les seccions eficaces i altres paràmetres neutrònics a través d'un codi lattice i un simulador de nucli. Es porta a terme una anàlisi d'incertesa i sensibilitat per a les seccions eficaces contingudes en la llibreria neutrònica ENDF/B-VII. La seua incertesa es propaga a través del codi lattice SCALE6.2.1, incloent les fases per col¿lapsar i homogeneïtzar, fins aplegar a la generació d'una llibreria neutrònica específica del problema. Després, la incertesa continguda en la esmentada llibreria pot continuar propagant-se a través d'un simulador de nucli, per a aquest estudi PARCSv3.2. Per a l'anàlisi d'incertesa i sensibilitat s'ha utilitzat el mòdul SAMPLER -disponible a l'última versió de SCALE- i la ferramenta estadística DAKOTA 6.3. Com a part d'aquest procés, també es desenvolupa una metodologia per a obtenir llibreries neutròniques en format NEMTAB per ser utilitzades en simuladors de nucli. S'ha realitzat una comparació amb el codi CASMO-4 per obtenir una verificació de la metodologia completa. Aquesta s'ha provat utilitzant un reactor d'aigua en ebullició del tipus BWR. Tanmateix, no hi ha cap preocupació o limitació respecte del seu ús amb un altre tipus de reactor nuclear. Per a la quantificació de la incertesa s'utilitza la metodologia estocàstica Gesellschaft für Anlagen und Reaktorsicherheit (GRS). Aquesta metodologia fa ús del model d'alta fidelitat i un mostreig no paramètric per propagar la incertesa. Com a resultat, el nombre de mostres (determinat amb la fórmula revisada de Wilks) no depèn del nombre de paràmetres d'entrada, sols depèn del nivell de confiança i incertesa desitjats dels paràmetres d'eixida. A més, las funcions de distribució de probabilitat no estan limitades a la normalitat. El principal inconvenient és que s'ha de disposar de les distribucions de probabilitat de cada paràmetre d'entrada. Si és possible, les distribucions de probabilitat d'entrada es defineixen utilitzant informació trobada a la literatura relacionada. En cas contrari, la incertesa es defineix en base a l'opinió d'un expert. S'utilitza un segon escenari per propagar la incertesa de diferents paràmetres termo-hidràulics a través del codi acoblat TRACE5.0p3/PARCSv3.0. En aquest cas, s'utilitza un reactor tipus PWR per simular un transitori d'una caiguda de barra. Com a nova característica, cal assenyalar que el nucli es modela element a element seguint una discretizació totalment 3D. No s'ha trobat cap altre estudi que utilitze un nucli tan detallat en 3D. També s'utilitza la metodologia GRS i el DAKOTA 6.3 per a aquesta anàlisi d'incertesa i sensibilitat.¿
Mesado Melia, C. (2017). Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86167
TESIS
Livros sobre o assunto "Stochastic neutronics"
Relative Biological Effectiveness of Neutrons for Stochastic Effects (Documents of the NRPB). National Radiological Protection Board, 1997.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Stochastic neutronics"
Pyeon, Cheol Ho. "Neutronics of Lead and Bismuth". In Accelerator-Driven System at Kyoto University Critical Assembly, 177–213. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0344-0_7.
Texto completo da fonteGould, Christopher R., e Edward David Davis. "Time Reversal Invariance in Nuclear Physics: From Neutrons to Stochastic Systems". In CP Violation in Particle, Nuclear and Astrophysics, 206–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47895-7_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Stochastic neutronics"
Houpert, Corentin, Josselin Garnier e Philippe Humbert. "INVERSE PROBLEMS FOR STOCHASTIC NEUTRONICS". In 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Research and Development for Computational Methods in Engineering Sciences (ICMES), 2021. http://dx.doi.org/10.7712/120221.8022.18997.
Texto completo da fonteMercatali, Luigi, Yousef Alzaben e Victor Hugo Sanchez Espinoza. "Propagation of Nuclear Data Uncertainties in PWR Pin-Cell Burnup Calculations via Stochastic Sampling". In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81711.
Texto completo da fonteOhgama, Kazuya, Gerardo Aliberti, Nicolas E. Stauff, Shigeo Ohki e Taek K. Kim. "Comparative Study on Neutronics Characteristics of a 1500 MWe Metal Fuel Sodium-Cooled Fast Reactor". In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60455.
Texto completo da fonteCOAKLEY, K. J. "Stochastic Modeling and Simulation of Marginally Trapped Neutrons". In Next Generation Experiments to Measure the Neutron Lifetime. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814571678_0007.
Texto completo da fonteDi Filippo, Marco, Jiri Krepel, Konstantin Mikityuk e Horst-Michael Prasser. "Analysis of Major Group Structures Used for Nuclear Reactor Simulations". In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81445.
Texto completo da fonteMazzini, Guido, Bruno Miglierini e Marek Ruščák. "Comparison Between PARCS and MCNP6 Codes on VVER1000/V320 Core". In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30386.
Texto completo da fonteGosmain, Cécile-Aline, Sylvain Rollet e Damien Schmitt. "3D Calculations of PWR Vessels Neutron Fluence With EFLUVE 3D Code". In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16316.
Texto completo da fonteRelatórios de organizações sobre o assunto "Stochastic neutronics"
Todd S. Palmer e Qiao Wu. Improvements in Neutronics/Thermal-Hydraulics Coupling in Two-Phase Flow Systems Using Stochastic-Mixture Transport Models. Office of Scientific and Technical Information (OSTI), setembro de 2003. http://dx.doi.org/10.2172/815998.
Texto completo da fontePrinja, Anil. A Lumped Stochastic Model of Coupled Neutronic Assemblies. Office of Scientific and Technical Information (OSTI), outubro de 2020. http://dx.doi.org/10.2172/1680005.
Texto completo da fonte